CSL model checking

Quantitative Logics
15 May 2013

David N. Jansen

Recapitulation: CTMC

A continuous-time Markov chain consists of:

- S finite set of states

(often $S = \{1, 2, ... n\}$)

 $-\mathbf{R}: S \times S \rightarrow \mathbb{R}_{>0}$ transition rate matrix

 $-\pi_0$: S \rightarrow [0,1] initial state distribution (sometimes)

 $-L: S \rightarrow AP$ labelling with atomic propositions

Recapitulation: CSL

- state formulas φ, ψ
 - -a

atomic proposition

— ¬ф

negation

 $-\phi v\psi$

- disjunction
- $-\mathbf{P}_{\leq p}(\Pi), \mathbf{P}_{\geq p}(\Pi)$
- probabilistic operator
- $-\mathbf{S}_{\leq p}(\mathbf{\Phi}), \mathbf{S}_{\geq p}(\mathbf{\Phi})$
- steady-state operator
- path formulas Π
 - $-X^{I} \Phi$

next state

with time bound: an interval $I \subseteq \mathbb{R}_{>0}$

 $- \phi U^I \psi$

until

CSL Model checking

- Assume given a CTMC (S, R, L) and a formula φ
- Find, for each state formula ψ that is in φ,
 the set of states that satisfies it, Sat(ψ)
- Find, for each path formula Π that is in φ , the set of paths that satisfies it, $Sat(\Pi)$

Simple formulas

Atomic proposition:

$$Sat(a) = \{ s \in S \mid a \in L(s) \}$$

• Negation:

$$Sat(\neg \phi) = S \setminus Sat(\phi)$$

• Disjunction:

```
Sat(\phi v \psi) = Sat(\phi) \cup Sat(\psi)
```

Next formulas

- $Sat(\mathbf{P}_{\leq p}(\mathbf{X}^I \mathbf{\Phi})) = \{ s \in S \mid Prob_s(Sat(\mathbf{X}^I \mathbf{\Phi})) \leq p \}$
- Do not actually calculate this satisfaction set!

• This is similar to PCTL next formula & probability to take the transition in interval I.

Until formulas

• $Sat(\mathbf{P}_{\leq p}(\phi \cup^{I} \psi))$ = $\{ s \in S \mid Prob_{s}(Sat(\phi \cup^{I} \psi)) \leq p \}$

- There is not a fixed number of transitions in this interval.
- Use Fox–Glynn sum, combined with timebounded until model checking

we are going to make this slide together

Steady-state formulas

```
• Sat(\mathbf{S}_{\leq p}(\Phi)) =
{ s \in S \mid \pi_s \leq p \text{ for the equation } \pi Q = 0 }
```