
RSSin – clever RSS reader for Android

Jos Craaijo, Camil Staps, Joep Bernards, Randy Wanga

June 26, 2015

Abstract

In the past decades, the amount of information publicly
available has grown dramatically, which is popularly con-
sidered to be the cause of more stress, burnouts, and
Alzheimer’s disease. It is necessary to develop methods to
process information automatically, such that someone only
has to read the information relevant for him. In this article
we’re proposing a way to do this with RSS feeds, based on ar-
tificial intelligence.

1 Introduction

News can be found in different sources, mostly organised
by category. As an example, CNN [3] has different feeds for
different regions of the world and different news categories
(sports, tech, environment, . . . ). The first hurdle one has to
take when designing a system that intelligently filters news,
is to gather news from different sources. After that, the huge
amount of news available has to be filtered by relevance for
the reader, and displayed in an appropriate manner.

Besides filtering or ordering article lists, there also needs
to be a system in place to filter article contents. Even when a
reader gets an article list sorted by relevance, he doesn’t have
the time or the will to read all the relevant articles: he wants
to read the gist of the article in at most a few sentences, and
decide for himself whether he’s going to continue reading or
not. A second requirement is thus a system that can intelli-
gently shorten article texts.

In this report we present RSSin [2], a clever RSS reader for
Android. It combines the aforementioned features in order
to combine article lists from different RSS feeds [1] into one,
to order that one list by relevance from the user, and finally
to summarise article texts to give a compact overview.

RSSin started as a university project at the Radboud Uni-
versity [13] but is now an open source community project.
This document describes the current state of the project,
along with the design rationale.

1.1 Report organisation

Section 1.2 will give an overview of older projects that are
somehow related to what we have done with RSSin, and a
brief discussion as to why the tools currently available are not
good enough. In section 2 we will walk through the goals we
wanted to accomplish in general with our RSS reader, while
section 2.1 looks at the additional requirements when devel-
oping for Android. In section 3 we will describe the user in-
terface and argue why this is a good one. Section 4 gives a
brief overview of the different packages in the source code
and is the absolute minimum one should read before forking
our repository [2] and continuing development. During the
development we made some discoveries that may be useful
to others, we will describe these in section 5. Section 6 gives
some suggestions for other developers to continue the work,
and in section 7 we look back at our project.

1.2 Related work

Many, many RSS readers have been made, for Android as well
as for other platforms. As for Android apps, we didn’t find any
that does something more intelligent than sorting articles in
chronological order. For other platforms there is Yahoo Pipes
[5], but using it is not intuitive, and building useful filters is
time-consuming. Researchers at the University of Pisa have
discussed algorithms for ranking news streams [4], but does
not take into account the reader’s preferences. Still, this latter
paper is an interesting one and as far as we know the first to
formalise ranking news streams.

Of course, several search engines are using artificial intel-
ligence to predict how interesting a searcher is going to find
a certain page – a notable example is the extended version of
PageRank [6] Google is using. However, it can be assumed
that these algorithms are using machine learning over the
whole set of their clients, and are building large user profiles
that go together with privacy issues. There should be a solu-
tion that does not immediately raise privacy concerns.

2 Specification

Having seen and used several of the applications mentioned
above, we set out to build a new kind of RSS reader. One
that does not simply display articles, but sorts them for you.
One that gives you a compact overview of the most impor-
tant news rather than requiring you to click through to read
the article contents, or displays all contents in the overview
such that the list isn’t compact enough. And finally, one that
does all this without requiring external resources besides the
news sources, and uses only your data to order article lists.
Concretely, we wanted to meet the following requirements:

• Fetches news from different sources

• Uses artificial intelligence to order articles based on rel-
evance for the reader

• Only uses privacy-sensitive information of the user him-
self

• Is intuitive to use

• Summarises article contents for a compact overview

• Can do all this within reasonable time on a regular An-
droid 4.0+ phone in terms of performance

2.1 Android frontend

With the current state of artficial intelligence and the plat-
form restrictions found on a regular smartphone, we cannot
rely solely on artificial intelligence. In particular, it wouldn’t
be sufficient to put articles from all sources altogether in one
list and rely on the AI to order this properly. Users may sud-
denly want to only read sport news, and ignore other cate-
gories, or may decide that that moment they only care about
news published by Reuters. Even if AI is already able to recog-
nise this, it is certainly not something that can be done using

1



the resources available on a regular smartphone. We thus de-
cided to give the user the following views:

• An overview of all articles from all feeds

• An overview of the articles from a single feed

• Several customisable views (“filters”) combining articles
from several feeds, as configurated by the user

Furthermore, there are views for adding and removing
feeds and filters, and for reading a full article.

We will now proceed by walking through the design of both
the user interface and the backend.

3 User Interface

Since the amount of feeds and filters and thus the amount of
overviews can be large, and all these views should be easily
accessible, we have decided to use a hamburger menu (fig-
ure 1a). Almost all views are accessible from the hamburger
menu. The “All feeds” item gives a sorted overview of articles
from all feeds. Below, there are the customisable filters. Tap-
ping on a filter itself gives you an article list with articles from
the feeds that are linked to that filter. Tapping on the menu
heading “Filters – EDIT” brings you to a view where you can
add, edit and remove filters. Further down the menu we find
the list of all feeds. Similar to the filters list, tapping on a feed
itself gives an article list with only articles from that feed, and
tapping on the menu heading brings you to a view where you
can add and remove feeds.

As you can see, all menu items give you the same kind of
view, which makes this an easy to use solution. Only the two
menu headings for filters and feeds give a different view, but
we gave these items a different layout (a lighter background
and the text “EDIT” on the right) so that the distinction is
clear.

All article lists (figure 1b) are simple lists, leaving room for
the content. We used CardViews to give the lists an Android
look and feel. The lists show the user the title and publication
date of an article, as well as a short summary.

Figure 1c and 1d show parts of the configuration interface.
There is nothing special there, but it is simple and intuitive to
use.

Tapping on an article brings the user to a view with only
that article (figure 2). Here, he may see the full text (that is,

the text in the RSS feed – this may not be the full article, de-
pending on the feed). There is a button to go to the website
of the article. More importantly, in the action bar there are
buttons for giving feedback to the artificial intelligence, using
simple and intuitive “likes” and “dislikes”. Lastly, the action
bar has a button with which the article can be shared using
other apps on the device.

Figure 2: An article, with (dis)like and share buttons

4 Code organisation

The source code may be found on GitHub [2]. In this section
we will give a brief overview of the different packages and
most important classes using a bottom-up approach. This
is not intended to be a complete overview. For more infor-
mation, the javadoc should be consulted.

The org.rssin.rss package provides basic functional-
ity for storing an RSS feed in an easily accessible manner.
The Feed class provides an easily accessible representation
of an RSS feed. It has attributes for metadata, such a de-
scription of the feed, and a list of FeedItems, which corre-
sponds to a item RSS tag. The FeedLoader can build such
a Feed from an XmlPullParser. This FeedLoader class can
also be used to fetch a feed from the internet. This is done
using a Fetcher (a simple interface from the http package
for something that can fetch data using HTTP requests) and
an asynchronous listener.FallibleListener (an object
with onReceive and onError methods).

These interfaces are, obviously, used to be able to easily

(a) The hamburger menu (b) An article list, here for all feeds (c) The list of feeds (d) Settings for a filter

Figure 1: RSSin screenshots

2



switch to different methods later, if necessary. As an example,
the VolleyFetcher from the android package implements
the Fetcher interface using the Volley library [8]. More im-
portantly, it allows anyone to create a different frontend later
on. One could even choose to not use Android. Anything
outside the android package does not rely on Android what-
soever. One may choose to build a different frontend, as a
CLI application, using Swing, or otherwise.

The org.rssin.rssin package consists of some very
basic classes that are needed to store the user’s pref-
erences. This is basically his feeds and filters, and a
FeedLoaderAndSorter which uses a neural network (which
we will get to in a minute) to order FeedItems.

To provide different ways to store these preferences
and the FeedLoaderAndSorter, we implement in-
terfaces from the storage package. In the android
package two such implementations can be found: an
InternalStorageProvider for storing objects in the inter-
nal storage, and a SharedPreferencesStorageProvider
that uses Android’s shared preferences. In addition to this,
there is a DefaultStorageProvider which is simply an
extension of the SharedPreferencesStorageProvider,
which allows you to change the StorageProvider later
on even more easily. Currently, we’re using the shared
preferences everywhere since the internal storage seems to
have some performance issues.

Such a StorageProvider can store Storables, for which
the default writeObject and readObject methods are
used. Classes may override these if wanted. Of course, the
default Java implementation of these methods is undesir-
able, as it doesn’t allow for flexible redesign of the stored
classes. A better way to store data would be using JSON or
XML. To this end we created a serialization package, with
some tools to serialise objects using JSON. Actually using
these classes gave us some problems with data getting lost,
so they cannot be considered production-ready, and are just
there as a starting point for development continuation.

All this already provides basic functionality for most of the
RSS readers available in the Play Store: with this one could
sort article lists chronologically, add and remove feeds, and
use filters. We won’t discuss the androidpackage which con-
tains the user interface in depth, as the user interface is fairly
straightforward. In addition to what any simple RSS reader
can, we want to sort on relevance and generate summaries.

The latter is done in the summaries package, which is a
Java port of the Babluki summary tool [9], with extended
functionality for different summary lengths and the like.

Finally, the neurons package is a set classes for simu-
lating a neural network. The artificial neural network is
an implementation of a relatively simple, two-layer feed-
forward network. The Neuron class represents one sin-
gle node, which the NeuralNetwork class uses to create
a network. The neural network returns predications as a
PredictionInterface. This interface can be used later on
to provide feedback to the neural network using the learn()
method, which uses backpropagation to train the network.

In some cases the network may get stuck in a local mini-
mum, which means it is unable to correctly learn a specific
pattern. To migitate this problem, a MultiNeuralNetwork
class has been added. This class averages the predictions of
multiple NeuralNetworks. Lastly, the FeedSorter class is
used to sort a list of FeedItems. The class exposes most of the
functionality of the neural network to other packages. Addi-
tionally, FeedSorter implements methods for sorting a list

of feeds and keeping track of feedback, using the Feedback
enum.

5 General recommendations

While working on RSSin, we’ve come across some interest-
ing pecularities that we’d like to mention here. They may be
interesting for other developers.

5.1 Storage methods

One interesting thing we discovered when developing dif-
ferent StorageProviders and were testing which one per-
formed better, was that the internal storage has some seri-
ous issues compared to shared preferences. The scenario was
that we had to store Java objects (from the rssin package).

We wrote a working implementation of StorageProvider
using Android’s internal storage, and one using the shared
preferences. Shared preferences are XML files stored in the
internal storage, so one would expect this would be slower
due to some overhead. However, it turned out that the shared
preferences were faster. Shared preferences can be ap-
plied asynchronously, but even when using the synchronous
commit method, this StorageProvider was faster. It is un-
clear to us why.

It should be noted that we can’t generalise this until we
found the exact cause of the performance difference. We
don’t know if the shared preferences are faster in any case, or
only in cases of serialisation of large objects, or only in very
specific cases. Naturally, there are some cases where the in-
ternal storage is preferred in any case – one could think of
situations where it’s necessary to append data, such as when
logging to a file.

5.2 RSS 6= RSS

The RSS specification [1] gives a lot of freedom for imple-
menters. That is a feature, but it also makes relying on feeds
being consequent impossible. Every RSS feed supplier has
different ideas of what should go in what field, how long the
description should be, whether or not HTML tags should
be stripped, if unstripped HTML tags should go in CDATA or
not, etc. Concretely, we found the following inconsequences:

• The length of the description may vary between one
sentence and several paragraphs.

• The description field may contain a) no HTML, b)
HTML tags as if they were XML tags, or c) HTML tags
in CDATA (as they’re supposed to be)

• Different suppliers have different ideas about where im-
ages should go (as img tag in the description, in the
enclosure tag, or in a separate media:content (or
similar) tag).

• The RSS specification states that the author field
should be an email, but plenty of feeds give a simple
name.

• Some feeds may include tracking pixels, which is com-
pletely ridiculous considering the application.

Ideally, RSS readers would simply not support feeds with
strange ‘features’. However, there are so many RSS read-
ers that the developers have to find something to be better
than others, and now readers are supporting the most ridicu-
lous inconsistencies. Unfortunately, RSSin doesn’t have that
many downloads yet to be a trend setter in this matter.

3



6 Future ideas

Currently, the latest release of the RSSin app has tag 0.1c,
indicating that still a lot has to be done before being really
production-ready, in particular in the user experience area.
A list with some ideas, in no particular order, is provided be-
low. The whole app is open source [2], and anyone is invited
to participate in making the following list shorter.

• Allow the user to swipe left and right an article from the
article lists to dislike and like it, respectively. This will
make giving feedback easier.

• Use a SwipeRefreshLayout to allow the user to refresh
article lists (this is currently not implemented due to in-
compatibilities with the RecyclerView).

• A cache, to not fetch all feeds again when changing the
view.

• Better error handling. For example, the “Loading” bar is
still there when there is no internet connection.

• Enhanced progress indicator, to show how many feeds
of the total have been loaded.

• Background synchronisation in combination with noti-
fications for the most important news.

• Widgets with most important news, from all feeds, one
feed, or a filter.

• Remove disliked articles from the article list.

• Sorting can be quite slow, especially on low-end devices.
Either optimize the neural network, or use a simpler
network (ideally the complexity of the network would
depend on the device, and there could be some kind of
calibration on first start-up)

• Add article images to the article lists.

• Add feed icons to the hamburger menu.

7 Evaluation

In section 2 we mentioned the goals we had before building
RSSin. Looking back, we can be content with the goals we
reached:

We succeeded in fetching news from different sources.
RSSin uses good artifical intelligence to order articles by rel-
evance. We do not need privacy-sensitive information from
the user. The app produces concise and complete sum-
maries. The app is relatively intuitive to use, even though
there are still some things to improve (see section 6). RSSin
is fast enough on a regular smartphone, but performance
could be improved (see section 6). Lastly, there is a clean and
simple interface with all the views we intended to use in sec-
tion 2.1.

We used Git [10] to keep track of different versions. We
found this to have different notable advantages (over other
version control systems or using no such system at all):

• Working offline is possible

• It is faster than other systems

• It is possible to commit code without breaking the build,
on a different branch

We are glad that through using it, we learned the basics of
branching, merging and tagging in Git. We did find though
that the GitHub client for windows [11] has very limited func-
tionality. In the end, we preferred working with the CLI, even
though it is limited on Windows, or using Git in Cygwin [12].

Similarly, we learned a lot about Android development.
The Volley networking library [8] and the differences between

different storage providers (see section 5.1) are just some ex-
amples. While we’re happy to have gained experience with
Android, we found it a pity to have to spend quite some time
finding out the specifics of XML layouts. The ideas behind
Android layout files are completely different from those that
are at the base of HTML, with which we are more familiar.
Furthermore, the documentation [7] – though complete – of-
ten lacks examples.

When preparing for the first release, we noticed we weren’t
writing enough comments. Many code snippets (like for
Activities or layout files) can be generated automatically
using Android Studio. After doing that, we stripped them
down to the minimal functionality we needed and continued
with that. This lead in the end to the lack of comments in
many of these generated files. A next time we would take
more care about this, to make sure development can con-
tinue later.

Starting the project, we made a highly simplified UML di-
agram and distributed tasks over different Java packages and
developers. Having the interaction between different classes
fixed, everyone could write a first version of his package(s)
without having to bother about the others. This helped us
to get a first version working very quickly. We only needed
to communicate when making this UML diagram and when
putting everything together once we had written our parts.
A next time we would certainly take a similar approach. De-
pending on the size of the project, we would also write more
automated tests to test the different functionalities sepa-
rately.

References

[1] RSS 2.0 specification, http://cyber.law.harvard.
edu/rss/rss.html

[2] RSSin: clever RSS reader for Android, https://rssin.
org/, https://github.com/camilstaps/RSSin

[3] CNN RSS feeds, http://edition.cnn.com/services/
rss/

[4] Del Corso, Gullí, Romani. Ranking a Stream of News,
http://www.di.unipi.it/~delcorso/papers/www.
pdf

[5] Yahoo Pipes, https://pipes.yahoo.com/pipes/
[6] PageRank, Method for node ranking in a linked database,

http://patft.uspto.gov/netacgi/nph-Parser?
patentnumber=6,285,999

[7] Android Developer’s Reference, http://developer.
android.com/reference/packages.html

[8] Volley networking library for Android, https:
//developer.android.com/training/volley/
index.html

[9] Babluki summary tool in Python, http:
//thetokenizer.com/2013/04/28/
build-your-own-summary-tool/

[10] Git - the stupid content tracker, https://git-scm.
com/

[11] GitHub for Windows, https://windows.github.
com/

[12] Cygwin - Linux-like environment for Windows, https:
//www.cygwin.com/

[13] Radboud University Nijmegen, the Netherlands, http:
//ru.nl

4

http://cyber.law.harvard.edu/rss/rss.html
http://cyber.law.harvard.edu/rss/rss.html
https://rssin.org/
https://rssin.org/
https://github.com/camilstaps/RSSin
http://edition.cnn.com/services/rss/
http://edition.cnn.com/services/rss/
http://www.di.unipi.it/~delcorso/papers/www.pdf
http://www.di.unipi.it/~delcorso/papers/www.pdf
https://pipes.yahoo.com/pipes/
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=6,285,999
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=6,285,999
http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
https://developer.android.com/training/volley/index.html
https://developer.android.com/training/volley/index.html
https://developer.android.com/training/volley/index.html
http://thetokenizer.com/2013/04/28/build-your-own-summary-tool/
http://thetokenizer.com/2013/04/28/build-your-own-summary-tool/
http://thetokenizer.com/2013/04/28/build-your-own-summary-tool/
https://git-scm.com/
https://git-scm.com/
https://windows.github.com/
https://windows.github.com/
https://www.cygwin.com/
https://www.cygwin.com/
http://ru.nl
http://ru.nl

	Introduction
	Report organisation
	Related work

	Specification
	Android frontend

	User Interface
	Code organisation
	General recommendations
	Storage methods
	RSS = RSS

	Future ideas
	Evaluation

