
TRUSTING STRANGERS
Open Source Software and Security

Carl E. Landwehr
Institute for Systems Research, University of Maryland, College Park, MD, USA

Abstract: The issues of trusting software, certifying security, and the relative merits of
open and closed source software as a basis for critical systems are discussed. It
is concluded (i) that neither approach in itself can assure the absence of
security flaws or sabotage, (ii) that better methods are needed for assuring the
properties of products without respect to the people or process used to create
them, and (iii) that system architects should exploit what they know they don’t
know, as well as what they do know, in composing system architectures.

Key words: security, trust, certification, open source, closed source

1. SOFTWARE AND TRUST

We trust many artifacts that we do not personally investigate or even
understand. Most of us probably understand how a rowboat or a bicycle
works, and we can usually see all of its functioning parts. But using a car, an
airplane, or almost any modern appliance involves relying on technology
that we don’t examine directly and which in many cases we understand only
at some surface level. Few of us understand the detailed calculations and
inspections that underlie the safety of public buildings in which we enjoy
concerts and films or the microwave ovens in which we may cook dinner.
We in fact rely on the anonymous strangers who design, build, deliver, and
in some cases maintain that artifact, as well as the processes that are in place
in our society to reward or punish them.

Software is an unusual sort of artifact in that it has little physical
substance, yet it can convey information, possibly sensitive information, and
it can control physical devices. It has a significant cost of design and
implementation, yet very low cost of replication. Very minor changes in its
physical realization can cause major changes in system behavior. Though a

great deal of money is spent on it, it is rarely sold. Usually it is licensed,
customarily under terms that relieve the producer from nearly all
responsibility for its correct functioning.

There are many perspectives for contrasting open and closed source
software: purchase price, maintenance cost, reliability, performance, safety,
interoperability, and so on. The focus here is from the security perspective,
from which we consider the response of software to potential acts of malice.

Safety critical systems for public use frequently depend on certification
of process combined with some degree of inspection and testing. These
processes, particularly when combined with both the threat of legal liability
for the consequences of accidents attributed to poorly engineered products,
and the possibility of customers avoiding products and companies whose
products have proven unsafe, seem to work reasonably well. There are not
regular reports of airplanes falling from the sky or trains colliding because of
faulty software. Continued vigilance in these domains is of course required.

Unfortunately, these processes do not seem to be operating so well with
regard to security. The possibility of malicious use, or the malicious
insertion of subtle flaws that might later be maliciously exploited is not in
general contemplated by the certification processes applied in safety.

There are, of course, regular and increasing reports of security failures in
systems throughout the world. The increasingly common malicious acts of
creating and distributing worms and viruses primarily exploit accidentally
introduced flaws in widely distributed software. Economic incentives (e.g.
for platforms from which to send spam or mount distributed denial of service
attacks) motivate the covert installation of malicious, remotely controllable
software on vulnerable platforms.

There are also mechanisms for certifying the security properties of
software. The primary mechanism at present is the provided by the
“Common Criteria” scheme, which provides a somewhat complex means to
specify the security properties and assurance level required of some
particular component and to evaluate whether those properties are present in
some particular target of evaluation.

There are two significant problems with this scheme: one is that at the
levels of assurance most commonly sought, the source code of the system is
never even looked at by the certifiers; their tasks are primarily to assure that
the system’s specifications are properly in order (and often these are created
strictly for the certification process), to perform some level of testing of
security functions, and to see that mechanisms are in place to assure that the

680 Carl E. Landwehr

2. CERTIFYING SECURITY

software delivered is the same as what was evaluated. Yet the kinds of
software flaws most commonly exploited by today’s attacks are not likely to
be discovered without access to the source code. Second, this scheme
remains component-oriented, while security remains a system property. This
is not to say that the scheme is without merit, but it is very definitely limited
in what it can achieve, and its cost-effectiveness has never been assessed.

But in a world where the headlines are being made by suicide bombers,
nations continue to engage in well-funded intelligence gathering activities,
and daily electronic transfers of funds in the US Fedwire system alone
average more than $1 trillion, simple software flaws are not the only concern
in assessing software security. Software that may wind up in critical systems
may be the target of specific attacks. Indeed, a recent book asserts that the
U.S. made sabotaged pipeline control software available for the Soviet
Union to obtain more than twenty years ago, and this software in the end
triggered a major pipeline fire in Siberia. While I have no direct knowledge
of the truth or falsity of this report, it is difficult to deny that that famous fire
might have been triggered in this way. An expert might well be able to hide
such software sabotage so that it is not even visible in the source code, using
methods like those documented in Ken Thompson’s famous Turing lecture.
Software can be highly inscrutable even if the source code is available; the
effects of asynchronous operations and feature interactions are notoriously
difficult to understand.

Do these considerations weigh on one side of the balance or the other for
open source software?

Open source software has the advantage that any interested party can
apply arbitrary tools to investigate it, to rebuild it, and to modify it to suit
specific needs. It may be compiled by different compilers and linked by
different linkers and the results compared. It can be examined by an arbitrary
third party in as much detail as the sponsor can afford. But liability is
unlikely to be present as a potent force in this case, since the user takes on
the responsibility of composing, and potentially changing, the software.
Control over the input to the source code may be uncertain, since it may
have contributions from around the globe. And the fact that the proverbial
“thousand eyes” could examine it does not mean they will, or that all of
those eyes will be friendly -- they may be looking for holes, or places to
insert subtle back doors. There is ample evidence that flaws can persist
unseen in source-available software for decades. People may donate effort
to creating open source software, but the evidence to date is that, except in a

Trusting Strangers 681

3. OPEN VS. CLOSED

few notable cases (e.g., OpenBSD), they won’t donate very much effort to
providing competent security review of it.

Closed source software has the benefit of the producer’s economic
interest in the product. This interest should not be underestimated; it is (or
can be) a powerful force for assuring product quality in a competitive
marketplace. It can drive strong measures for control of software
development, for testing of software prior to release, for configuration
control of the released product and for prompt repair of defects. It is the
value of the product in the marketplace, and hence its value as a corporate
asset, that can justify this investment. Regardless of one’s view of the result,
it is certainly significant that after years of shrugging off security concerns
as irrelevant to the market, since January 2002 Microsoft has apparently
invested heavily in improving its programming practices from the standpoint
of security and in changing the tradeoffs it makes in determining what
features to enable by default. Nevertheless, even lacking the source code,
hackers continue to find and exploit security flaws in Microsoft and other
closed source software products. Further, commercial software development
is increasingly a global enterprise, even if it is conducted within one
corporation.

I propose three general conclusions from these observations:
Caveat emptor. Neither the open source model nor the closed source
model has done a very good job of producing “bullet-proof software
except when someone has been willing to make a significant investment
for that purpose. Exposing the source code does nothing per se to
improve its security properties. Neither does hiding it.
Seek product and architectural assurance rather than process assurance.
As software, closed or open source, is developed by groups of people in
many diverse locations around the world, it will become increasingly
difficult to have confidence that a particular critical system is secure
because its software was produced by people you trust or by people using
a process you trust. Rather, we need stronger methods for examining the
actual code run on critical systems to assure that it has the intended
properties, and where we can’t gain that assurance, we need architectural
methods to limit the damage it can cause.
Exploit what you know, and what you know you don’t know, about the
software in your system. If you are using open source software, take
advantage of the opportunity to review it, consider whether you should
reconfigure it or rebuild it. If you are dealing with a vendor of closed

682 Carl E. Landwehr

4. CONCLUSIONS

1.

2.

3.

source software, investigate the development processes used, consider the
possible motivations of the developer, take account of any independent
evaluations of the software, or the lack thereof. Use this information to
develop a system architecture that manages the risks you know about.

Thanks to my Maryland colleague Michael Hicks for helpful comments
on a draft of this note.

Trusting Strangers 683

ACKNOWLEDGMENT

