Reader on SQL (Structured Query Language)

1 SQL (Structured Query Language) ; an extensive introduction

Content of this SQL-reader:

1

el

oo

10.

11.
12.

13.
14.
15.
16.
17.

18.
19.
20.

21.
22.

Introduction to this SQL-reader

Basic concepts of SQL (table, column, row, field, value)
The basic form of the retrieval command (Select ...)

Selecting All or Particular Columns from One Table (Select ...From ...)

Ordering columns

Ordering rows (Order By ...)

Vertical subsetting (by a list-of-column-names)
Selecting Specified Rows of One Table (Select ... From ... Where ...)
Boolean operators (AND, OR, NOT ...)

The Set comparison operator /N (or: = ANY)
The operators BETWEEN , LIKE
Addition: remark I on ‘NULL -values (IS [NOT] NULL)

Built-in ‘aggregate’ Functions (AVG, SUM, MIN, MAX, COUNT)
A dangerous extension in the Select-clause: assimilation of a complete query

Calculations through ‘scalar’ operators (+,-,%,/...)

The Grouping Feature (Group By .../ Having ...)
Selecting Columns and Rows From Several Tables (joins’: FROM ..., ... ,......)
Addition: Join with GROUP BY in case of N : M -relations between tables.

Subqueries

Supplement: Extreme (maximum / minimum) values (>=ALL, <=ALL, ...)
Addition: remark II on ‘NULL ’-values ([NOT] IN)

Use of More Than One Copy of a Table

Correlated Subqueries

Addition: correlation in case of an assimilated query in the SELECT-clause
Addition: Join / GROUP BY -problem with N:M-relations in MS Access

Test for Existence on Subqueries (WHERE [NOT] Exists ...)
De UNION-operator (...UNION [ALL] ...)
Creating and Manipulating Table Definitions (DDL) (Create, Alter+Add, Drop)
Updating the database (Insert, Update+Set, Delete)
Views (definitions for “virtual tables’) (...VIEW ...)

Addition: use of views to emulate the COUNT (DISTINCT ...) - construct

Controlling the Execution of Commands (Commit / Rollback Work)
Granting and Revoking User Privileges (Grant/ Revoke)

New possibilities with SQL2 (SQL/92)
New join-types in SQL2 (especially the outer join)
New DDL-possibilities to enforce data-integrity (Primary/Foreign keys, Check)

Appendix A : Presidential database table relationships
Appendix B : The presidential database

NIII / Radboud University of Nijmegen (the Netherlands) 1

Reader on SQL (Structured Query Language)

1.1 Introduction to this SQL-reader

This reader is mainly based on an English ‘manual’ from a rather obsolete SQL-database-system. A
number of specific aspects of this RDBMS have been omitted. We also added a number of additions
and observations.

The original manual-RDBMS was based on the SQL-/-version, which is mainly dedicated to the
manipulating of data in a relational database; the requesting of data (by way of the SELECT ...-
command) was a very important aspect. In later versions of SQL, watching the mutual relationships
between data in the database has been more elaborated.

Because in this reader we especially focus on the requesting possibilities of SQL, we can base
ourselves unconcerned on SQL-/.

Some aspects of SQL-2 are discussed in the last chapter. Further on in this course we’ll also discuss
SQL-2 additional aspects about the enforcement of data constraints.

We give the following outline for a systematic approach to formulate an appropriate SQL-query:

=» ‘Top down’- approach for drawing up SQL-queries:

For a systematic approach to formulate an appropriate SQL-query you always must start the analysis of
an information demand with considering the following aspects (in the given sequence):

1. From which table(s) data have to be consulted/extracted?
2. In which columns do we find the data we need (in general: the data that have to be shown)?

3. What are the criteria to select the table-rules that have to be taken into account (eventually: join-
or subquery-criteria)?

Later we will add some more refined questions like:

Do we have to apply grouping of data (if yes: does there exist a grouping criterion)?
Do we have to determine extreme values (minimum, maximum)?

Is a ‘correlated subquery’ necessary?

And eventually a few additional aspects.

Not part of the top down-part of this approach, but very important is always the following aspect:

4. Ifyou test your query, does it give an acceptable answer to the information demand?
Do the testing process first by ‘desk top testing’, followed by testing with a real DBMS.

Always keep in mind this approach if you have to formulate an SQL-query.

Nijmegen, the Netherlands, October 2007,

Ger Paulussen

NIII / Radboud University of Nijmegen (the Netherlands) 2

Reader on SQL (Structured Query Language)

2 Basic concepts of SQL (table, column, row, field, value)
All information in the Relational Data Model and in SQL is in the form of tables. A table is usually
called a relation in the Relational Data Model. In SQL, the preferred term is table.

All tables in SQL are two-dimensional, having a specific number of columns and a variable, arbitrary

number of unordered rows.

In the Relational Data Model literature, columns are often called attributes, and rows are called tuples.

The next figure shows a table, called RECENT_PRESIDENTS. This table has six columns (named
PRES_NAME, BIRTH_YR, YRS_SERV, DEATH_AGE, PARTY and STATE_BORN) and nine rows.

RECENT_PRESIDENTS:

PRES_NAME BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Roosevelt F D 1882 12 63 Democratic | New York
TrumanH S 1884 7 88 Democratic | Missouri
Eisenhower D D 1890 8 79 Republican | Texas
Kennedy J F 1917 2 46 Democratic | Massachusetts
Johnson L B 1908 5 65 Democratic | Texas

Nixon R M 1913 5 ? Republican | California

Ford GR 1913 2 ? Republican | Nebraska
Carter JE 1924 4 ? Democratic | Georgia
Reagan R 1911 3 ? Republican | lllinois

Names for tables and columns in SQL must begin with a letter, $, # or @ , and may contain up to 18

characters. Permitted characters are upper and lower case letters, numbers, $, #, @ and underscores. In

general, names should not to be too short, (like A or BB) nor too long (like
TERM_SERVED_IN_OFFICE).

Throughout this publication the underscore ' ' will be used in table and column names to delimit
words instead of blanks, which are illegal inside a name. This is done to improve readability, for
example, YRS_SERYV is clearer than YRSSERV.

This RECENT_PRESIDENTS table is used in the following text and examples.
The table contains five kinds of facts about presidents who were born after 1880:
e the president’s birth year
e number of years in office
e his/her age at death if applicable '
o the party of the president at the time of first inauguration
e the state where the president was born

Before formulating a query on a database we need to know the existing table names and column
names and their data types. It is useful to have a table template or relational schema diagram
containing all the table names and column names.

For our example of RECENT_PRESIDENTS this template is given in the next figure.

TEMPLATE RECENT_PRESIDENTS (<= table name)

PRES_NAME BIRTH_YR

column name =>

YRS_SERV

DEATH_AGE

PARTY

STATE_BORN

CHAR (15) SMALLINT

data type =>

SMALLINT

SMALLINT

CHAR (12)

VARCHAR(14)

! Addition: this value cannot be ‘mandatory’ as of course for presidents that are still alive, their death-age cannot
be known. In the case of not recorded values, we speak about ‘NULL’-values. Later on we will see, that such

NULL-values are only possible if this is admitted by the table-definition. In generated output such NULL-values
often are shown through a question mark (‘?’) or a <null> or something like that.

NIII / Radboud University of Nijmegen (the Netherlands)

Reader on SQL (Structured Query Language)

The first column, PRES_NAME, identifies the president. It contains the president’s last name,
separated by blanks.

We assume preliminarily that the number of columns in the table is fixed, and that the number of rows
is variable, and grows every time a new president is electéd. However, a unique feature of SQL is the
fact that the number or columns can be dynamically extended, as explained later.

The tabular data model of SQL is simple to understand. The elements of a table are: TABLE NAME,
COLUMN NAME, COLUMN, ROW and FIELD.

NIII / Radboud University of Nijmegen (the Netherlands) 4

Reader on SQL (Structured Query Language)

3 The basic form of the retrieval command (Select ...)
The basic form of the retrieval command in SQL is:

SELECT column-name , or list-of-column-names , or *
FROM table-name , or list-of-table-names
[WHERE search-condition]

When setting up a retrieval command, we must first consider in which table or tables the information
desired is contained. The names of these tables are listed in the FROM clause of the retrieval
command.

If we want to retrieve all of the information contained in a table, we list the names of the columns of
this table following the SELECT keyword, and omit the WHERE clause.

Alternatively, and more conveniently, we can enter:

SELECT *
FROM table-name

The symbol * means that all columns of the table named in the FROM clause will be retrieved.

If we do not want to retrieve all the information from a table, but rather a specific subset of a table or
of several tables, we must specify this subset in the SELECT clause or in the WHERE clause. There
are two kinds of subsetting.

e Vertical subsetting:
If we are only interested in retrieving a subset of the available columns, then this subset is
specified by listing the names of the columns we want to select in the SELECT clause.

e Horizontal subsetting:
If we are only interested in retrieving a specific subset of the table rows, we specify this in the
WHERE clause by using a search condition. Only those rows, which fulfill the search
condition, will appear in the result.

Any combination of vertical and horizontal subsetting is possible.

A search condition is basically a comparison of fields, constants, and expressions. The following
comparison operators may be used:

= equal to

<> not equal to (or ‘NOT ...=... orin some systems: "=)
> greater than

>= greater than or equal to

< less than

<= less than or equal to

Addition: by way of a special test we also can check of from a table row a certain [field] value yes or not is filled
in (so: yes or not ‘NULL”). That test can be done via: ‘IS /NOT] NULL’ .

Some examples of search conditions are:

YRS_SERV >=7 AND PARTY = 'Democratic'
YRS_SERV =12 AND DEATH_AGE /S NOT NULL

A search condition may be any combination of (sub) search conditions linked by logical operators (
AND, OR, NOT).

The arithmetic operators obey the usual algebraic precedence rules. Arithmetic operations are
evaluated before Boolean operations. Operator precedence can be over-ruled by using parentheses.

NIII / Radboud University of Nijmegen (the Netherlands) 5

Reader on SQL (Structured Query Language)

The following expression can have several different meanings depending on the position of
parentheses:

NOT YRS_ SERV * 10 > DEATH_AGE AND DEATH_AGE > 60 + BIRTH_YR /100
One can introduce parentheses to this expression without affecting its meaning:

(NOT (YRS_SERV * 10 > DEATH_AGE)) AND (DEATH_AGE > (60 + BIRTH_YR /100))
However, the meaning of the expression is changed by repositioning the parentheses:

NOT ((YRS_SERV * 10 > DEATH_ AGE) AND (DEATH_AGE > 60 + BIRTH_YR /100))

Quite often, the columns to be compared within a search condition are columns of the table(s) named
in the FROM clause. This is the case of a simple search condition. There may also be the case where
the comparison requires columns of a table or tables not named in the FROM clause. In this case we
must specify a so-called subquery within the condition.

The subquery has precisely the same basic form as any other SELECT command (SELECT ... FROM
... [WHERE ...]). The square brackets around the keyword WHERE mean that this element is optional.
It may, but need not, be used in the command.

For convenience of reading the result of a query, we may wish to have the columns and rows ordered
in some specific way. This can be achieved quite easily. The order of the columns of the result is
specified by the order of the column names in the SELECT clause.

This order need not conform with the order of the columns in the tables of the database. The order of
the rows of the result can be specified by appending an ORDER BY clause to the retrieval command.
There are many cases where we do not want to simply retrieve information from the database, but
rather to derive information through calculations. For that purpose, we have the facility to apply
specific arithmetic operators and built-in functions within a retrieval command.

The above mentioned concepts and features are already sufficient to formulate the majority of queries

in an average database application. In the following sections we will treat these concepts and features
in more detail, starting with the simplest, and proceeding to the more powerful possibilities.

NIII / Radboud University of Nijmegen (the Netherlands) 6

Reader on SQL (Structured Query Language)

4 Selecting All or Particular Columns from One Table (Select ...From ...)

The simplest case is to list a whole table. The format of this retrieval command is as follows:

SELECT *
FROM table-name

Many of the queries that follow will operate on the table of the RECENT PRESIDENTS.

An example of a query which lists an entire table follows:

4.1.1 Question

List the names, birth years, years served, ages at death (if any), parties, and birth states of all recent
presidents.

By investigating the database schema or table template, we find that we have precisely the same

column ordering as described in the table format defined in our table template. Thus, the query can be
formulated by using the format as given in the beginning of this chapter:

SELECT *
FROM RECENT_PRESIDENTS
Result:

PRES_NAME BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Roosevelt F D 1882 12 63 Democratic | New York
TrumanH S 1884 7 88 Democratic | Missouri
Eisenhower D D 1890 8 79 Republican | Texas
Kennedy J F 1917 2 46 Democratic | Massachusetts
Johnson L B 1908 5 65 Democratic | Texas
Nixon R M 1913 5 ? Republican | California
Ford GR 1913 2 ? Republican | Nebraska
Carter J E 1924 4 ? Democratic | Georgia
Reagan R 1911 3 ? Republican | lllinois

(So exactly the same figure as the one given for the whole table RECENT PRESIDENTS.)

4.2 ORDERING COLUMNS

We might wish to have the columns in a different order than provided in the table template in the
database. We achieve this by specifying in the SELECT clause the column names in the order we
require.

4.2.1 Question
List the names, birth years, ages at death (if any), years served, birth states and parties of all recent
presidents.

SELECT PRES_NAME, BIRTH_YR, DEATH_AGE, STATE_BORN, PARTY

FROM RECENT_PRESIDENTS
Result:
PRES_NAME BIRTH_YR | DEATH_AGE | STATE_BORN | PARTY
Roosevelt F D 1882 63 New York Democratic
Truman H S 1884 88 Missouri Democratic
Eisenhower D D 1890 79 Texas Republican
Kennedy J F 1917 46 Massachusetts | Democratic
Johnson L B 1908 65 Texas Democratic

NIII / Radboud University of Nijmegen (the Netherlands) 7

Reader on SQL (Structured Query Language)

Nixon R M 1913 ? California Republican
Ford GR 1913 ? Nebraska Republican
Carter JE 1924 ? Georgia Democratic
Reagan R 1911 ? lllinois Republican

4.3 ORDERING ROWS (OrderBy ...)

We might also wish to have the rows in a specific order that is different from the order the rows were
entered into the tables. To achieve this, we have to append an ORDER BY clause to the query. There
can be one or several ordering criteria in an ORDER BY clause.

An ordering criterion is an item from the SELECT list with an indicator whether the ordering is done
in an ascending or descending order of that item. The format of an ORDER BY clause is:

ORDER BY column-specification [ASC | DESC]
[,column-specification [ASC | DESC] ...]

If DESC is present, the order is defined as descending, otherwise ascending.
4.3.1 Question

List all rows in the table named RECENT PRESIDENTS, ordered by president names in ascending
order.

SELECT *

FROM RECENT_PRESIDENTS

ORDER BY PRES_NAME

Result:
PRES_NAME BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Carter JE 1924 4 ? Democratic | Georgia
Eisenhower D D 1890 8 79 Republican | Texas
Ford GR 1913 2 ? Republican | Nebraska
Johnson L B 1908 5 65 Democratic | Texas
Kennedy J F 1917 2 46 Democratic | Massachusetts
Nixon R M 1913 5 ? Republican | California
Reagan R 1911 3 ? Republican | lllinois
Roosevelt F D 1882 12 63 Democratic | New York
TrumanH S 1884 7 88 Democratic | Missouri
T

ordering criterion

It might be noted that PRES NAME is displayed first because it is the first column in the table, and
not because of its appearance in the ORDER BY clause.

In case we ordered the rows of the table according to a column where the fields are not unique (that is,
which is not a key), it might be useful to apply a second, third, etc., ordering criterion. While the first
ordering criterion is applied to the whole table, the second ordering criterion is applied to each
horizontal subset of the table where the fields specified by the first ordering criterion are equal. The
third ordering criterion further refines the ordering of the second etc.

4.3.2 Question
List the table named RECENT_PRESIDENTS, ordered by years served in descending order, and
within the same years served, ordered by birth state in ascending order.

SELECT *

FROM RECENT_PRESIDENTS
ORDER BY YRS_SERV DESC, STATE_BORN

NIII / Radboud University of Nijmegen (the Netherlands) 8

Reader on SQL (Structured Query Language)

The first ordering criterion is YRS _SERV. However, since there are several presidents with the same
years-served figure, we decided to have a second ordering criterion, birth state.

Result:

PRES_NAME BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN

Roosevelt F D 1882 12 63 Democratic | New York

Eisenhower D D 1890 8 79 Republican | Texas

Truman H S 1884 7 88 Democratic | Missouri

Nixon R M 1913 5 ? Republican | California

Johnson L B 1908 5 65 Democratic | Texas

Carter JE 1924 4 ? Democratic | Georgia

Reagan R 1911 3 ? Republican | lllinois

Kennedy J F 1917 2 46 Democratic | Massachusetts

Ford GR 1913 2 ? Republican | Nebraska
ordering criterion first: 1+ second: T

The combination of years served and state born is unique in this case, but only by chance.
If they were not unique, the order of rows for a particular combination of YRS _SERV and
STATE BORN values would be undefined, since we did not specify a third ordering criterion.

Note: Inthe ORDER BY clause one can use either the column name or the position of the item in the
SELECT list counting from left to right. This is most useful when the SELECT item is an expression
rather than a column.

Thus, question 5.04 could also be formulated as follows:
SELECT *
FROM RECENT_PRESIDENTS
ORDER BY 3 DESC, 6

4.4 VERTICAL SUBSETTING (by a list-of-column-names)
If we wish only a vertical subset of a table, that is, only a subset of the available columns, we specify
the columns we wish in the SELECT clause.

4.4.1 Question
List the names, birth years, and parties of all recent presidents. Order by parties and presidents' names,
both in ascending alphabetical order.

SELECT PRES_NAME, BIRTH_YR, PARTY
FROM RECENT_PRESIDENTS
ORDER BY PARTY, PRES_NAME

Result:

PRES_NAME BIRTH_YR | PARTY

Carter JE 1924 Democratic
Johnson L B 1908 Democratic
Kennedy J F 1917 Democratic
Roosevelt F D 1882 Democratic
TrumanH S 1884 Democratic
Eisenhower D D 1890 Republican
Ford GR 1913 Republican
Nixon R M 1913 Republican
Reagan R 1911 Republican

1 second first T ordering criterion

NIII / Radboud University of Nijmegen (the Netherlands) 9

Reader on SQL (Structured Query Language)

If we select columns whose combination is not unique within the table in the database, we find that
duplicate rows appear in the display. If we want to avoid these duplicates, we use the DISTINCT
operator immediately after the SELECT operator:

SELECT DISTINCT column-name, or list-of-column-names

FROM

If we deliberately wish to have these duplicate rows in the resulting table, we can either omit the
DISTINCT operator or we can replace it by the ALL operator:

SELECT ALL column-name, or list-of-column-names

FROM

4.4.2 Question
List all states where a recent president was born. Order by state (ascending order).

SELECT STATE_BORN

FROM RECENT_PRESIDENTS
ORDER BY STATE_BORN

Result:

STATE_BORN
California
Georgia

lllinois
Massachusetts
Missouri
Nebraska

New York
Texas

Texas

We find in the result that duplicate rows are displayed, namely, the last two rows are both Texas. The
same result could also have been achieved by using:

SELECT ALL STATE_BORN
FROM RECENT_PRESIDENTS
ORDER BY STATE_BORN

If we wish, however, to avoid duplicates, we have to use the DISTINCT operator, as in the following
example.

4.4.3 Question
List all states where a recent president was born, and eliminate duplicates. Order by state.

SELECT DISTINCT STATE_BORN
FROM RECENT_PRESIDENTS
ORDER BY STATE_BORN

Result:

STATE_BORN
California
Georgia

lllinois
Massachusetts
Missouri
Nebraska

New York
Texas

NIII / Radboud University of Nijmegen (the Netherlands) 10

Reader on SQL (Structured Query Language)

5 Selecting Specified Rows of One Table (Select ... From ...Where ...)

For selecting specific rows of a table, that is for horizontal subsetting, we specify a WHERE clause
after the table name. The condition in the WHERE clause is a comparison of fields, constants and
expressions. To start, with, we will now consider only the simple case of using columns that are in one
table.

The comparison operators are as follows:

= equal to

<> not equal to (or ‘NOT ... =...” orin some systems: "=)
> greater than

>= greater than or equal to

< less than

<= less than or equal to

5.1.1 Question
List all facts available in the table named RECENT_PRESIDENTS about the president named Carter J
E.

SELECT *
FROM RECENT_PRESIDENTS
WHERE PRES_NAME = 'Carter J E'

Result:

PRES_NAME | BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Carter JE 1924 4 ? Democratic | Georgia

Note:
A constant containing characters (e.g. 'Carter J E') must be enclosed in single quotes.
Numeric constants are never enclosed in quotes.

In the above example, we used the PRES-NAME column for comparison using the operator =. This
column is the key to the table, so the result can only be one row or empty. If we use a non-key column
for comparison with =, the situation is different. The result could be empty, one or several rows.

In the cases of the other kinds of comparisons (<>, >, >=, <, <=), the result could be empty, one or

several rows, independent of whether we use a key column or a non-key column for comparison.

5.1.2 Question
List all facts available in the table named RECENT_PRESIDENTS about all presidents born in Texas.

SELECT *
FROM RECENT_PRESIDENTS
WHERE STATE_BORN = 'Texas'
Result:
PRES_NAME BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Eisenhower D D 1890 8 79 Republican | Texas
Johnson L B 1908 5 65 Democratic | Texas
Remark:

Unlike conventional programming languages such as BASIC, C, COBOL, FORTRAN, PASCAL, PL/
etc. we have just seen that SQL is totally associative. This is a major advance from third generation
techniques. In SQL there is only one data structure, namely the table. Concepts like pointer, array or

NIII / Radboud University of Nijmegen (the Netherlands) 11

Reader on SQL (Structured Query Language)

repeating group as in PASCAL, FORTRAN and COBOL have been excluded from SQL without any
loss of functionality.
The result of these two basic differences is a drastic simplification in programming.

5.1.3 Question
List all facts available in the table named RECENT PRESIDENTS about all presidents not born in
Texas.

SELECT *

FROM RECENT_PRESIDENTS

WHERE STATE_BORN <> 'Texas' (or: NOT STATE_BORN = 'Texas')

Result:

PRES_NAME | BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Roosevelt F D 1882 12 63 Democratic | New York
Truman H S 1884 7 88 Democratic | Missouri
Kennedy J F 1917 2 46 Democratic | Massachusetts
Nixon R M 1913 5 ? Republican | California
Ford G R 1913 2 ? Republican | Nebraska
Carter JE 1924 4 ? Democratic | Georgia
Reagan R 1911 3 ? Republican | lllinois

5.1.4 Question
List all facts available in the table named RECENT PRESIDENTS about all presidents who served
more than 4 years.

SELECT *

FROM RECENT_PRESIDENTS
WHERE YRS_SERV > 4

Note: Numeric constants are never enclosed in quotes.

Result:
PRES_NAME BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Roosevelt F D 1882 12 63 Democratic | New York
Truman H S 1884 7 88 Democratic | Missouri
Eisenhower D D 1890 8 79 Republican | Texas
Johnson L B 1908 5 65 Democratic | Texas
Nixon R M 1913 5 ? Republican | California

5.2 BOOLEAN OPERATORS (AND, OR, NOT ,=", >’,...)

In a WHERE clause comparisons may be linked by the logical operators AND and OR, and possibly
negated with the NOT operator.

5.2.1 Question
List all facts available in the table named RECENT_PRESIDENTS about all presidents who are
Republican and were born in Texas.

SELECT *

FROM RECENT_PRESIDENTS

WHERE PARTY = 'Republican’
AND STATE_BORN = 'Texas’

NIII / Radboud University of Nijmegen (the Netherlands) 12

Reader on SQL (Structured Query Language)

Result:

PRES_NAME
Eisenhower D D

BIRTH_YR
1890

YRS_SERV
8

DEATH_AGE
79

PARTY
Republican

STATE_BORN
Texas

5.2.2 Question
List all facts available in the table named RECENT PRESIDENTS about all presidents who are
Republican or were born in Texas.

SELECT *
FROM RECENT_PRESIDENTS
WHERE PARTY = 'Republican’
OR STATE_BORN = 'Texas'
Result:
PRES_NAME BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Eisenhower D D 1890 8 79 Republican | Texas
Johnson L B 1908 5 65 Democratic | Texas
Nixon R M 1913 5 ? Republican | California
Ford GR 1913 2 ? Republican | Nebraska
Reagan R 1911 3 ? Republican | lllinois
5.2.3 Question

List all facts available in the table named RECENT PRESIDENTS about all Republican presidents
not born in Texas.

SELECT *
FROM RECENT_PRESIDENTS
WHERE PARTY = 'Republican’

AND NOT STATE_BORN = "Texas'

Equivalent formulation with ‘<>’ :

SELECT *

FROM RECENT_PRESIDENTS

WHERE PARTY = 'Republican’

AND STATE_BORN <> 'Texas'
Result:

PRES_NAME | BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Nixon R M 1913 5 ? Republican | California
Ford GR 1913 2 ? Republican | Nebraska
Reagan R 1911 3 ? Republican | lllinois

5.2.4 Question
List all facts available in the table named RECENT_PRESIDENTS about presidents who were born in
Texas, and Republican presidents not born in California.

SELECT *
FROM RECENT_PRESIDENTS
WHERE STATE_BORN = 'Texas'
OR (PARTY = 'Republican’ AND NOT STATE_BORN = 'California ')

NIII / Radboud University of Nijmegen (the Netherlands) 13

Reader on SQL (Structured Query Language)

Result:
PRES_NAME BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Eisenhower D D 1890 8 79 Republican | Texas
Johnson L B 1908 5 65 Democratic | Texas
Ford GR 1913 2 ? Republican | Nebraska
Reagan R 1911 3 ? Republican | lllinois

In the preceding examples, we were comparing fields with a single constant. If we have several
constants, there are two possibilities. One is to split the comparison into several comparisons, so that
each comparison has only one constant, and combine these comparisons using the logical operator OR.
The other possibility is to use a set comparison operator together with a set of constants. The most
frequently used set comparison operator is IN (or =ANY), which tests whether a given field value is
contained in the set which is the second operand of the comparison.

5.2.5 The Set comparison operator IN (or: =ANY)

5.2.6 Question
List all facts available in the table named RECENT PRESIDENTS about presidents born in Texas,
California, Georgia or New York.

First possibility, without using a set comparison operator:

SELECT *

FROM RECENT_PRESIDENTS

WHERE STATE_BORN = 'Texas'
OR STATE_BORN = 'California’
OR STATE_BORN = 'Georgia'
OR STATE_BORN='New York'

Second possibility, using the set comparison operator IN:

SELECT *
FROM RECENT_PRESIDENTS
WHERE STATE_BORN IN ('Texas', 'California’, 'Georgia', '"New York')

If we use a set comparison operator like IN (or =ANY) with a list of constants, this list must contain
at least two elements. A constant list is enclosed in parentheses, and constants are separated by
commas.

Result:
PRES_NAME BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Roosevelt F D 1882 12 63 Democratic | New York
Eisenhower D D 1890 8 79 Republican | Texas
Johnson L B 1908 5 65 Democratic | Texas
Nixon R M 1913 5 ? Republican | California
Carter JE 1924 4 ? Democratic | Georgia

Set comparison operators are described in greater detail in a following chapter about subqueries.

NIII / Radboud University of Nijmegen (the Netherlands) 14

Reader on SQL (Structured Query Language)

5.2.7 BETWEEN
Some other operators are also available for the convenient formulation of comparisons. The first of
these is the BETWEEN operator, which tests whether a value is within a specified range:

... expression-1 [NOT] BETWEEN expression-2 AND expression-3

The condition is satisfied if the value of expression-1 lies between the values of expression-2 and
expression-3 (or lies outside this range if the NOT option is specified). The three expressions can be of
arbitrary complexity, and may contain column names, constants, subqueries and arithmetic or other
operators. The only restriction is that they must all have compatible types.

Note that the range expression-2 to expression-3 is inclusive. The two conditions below are equivalent:
A BETWEEN B AND C
A>=B AND A<=C

5.2.8 Question
List all facts available in the table named RECENT_ PRESIDENTS about presidents who died at an
age between 60 and 70 years.

Formulation without the BETWEEN operator:
SELECT *
FROM RECENT_PRESIDENTS
WHERE DEATH_AGE >= 60 AND DEATH_AGE <=70

Formulation with the BETWEEN operator:

SELECT *
FROM RECENT_PRESIDENTS
WHERE DEATH_AGE BETWEEN 60 AND 70

Result:
PRES_NAME | BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Roosevelt F D 1882 12 63 Democratic | New York
Johnson L B 1908 5 65 Democratic | Texas

529 LIKE

Another comparison facility which can be useful in some cases is the ability to compare a character
field with a pattern. For this purpose we use the LIKE operator:

... column-name [NOT] LIKE quoted-string.

The quoted string may contain arbitrary characters, however, special meanings are reserved for the
characters _ and %. The character _ represents any single character, while the character % represents
any string of zero, one or more characters. These two special characters may be used together with
ordinary characters in the quoted string, in any combination.

Addition: in some SQL-systems (notably in Microsoft’s MS Access) other ‘wild card’-symbols can be used. In
MS Access a “?’ is used as a wild card for just one character and ‘*’ for none, one or more characters.

NIII / Radboud University of Nijmegen (the Netherlands) 15

Reader on SQL (Structured Query Language)

5.2.10 Question
List all facts available in the table named RECENT_PRESIDENTS about presidents whose name has
tbe letter 'e' in the second position.

SELECT *
FROM RECENT_PRESIDENTS
WHERE PRES_NAME LIKE ' _e%'
Result:
PRES_NAME | BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Kennedy J F 1917 2 46 Democratic | Massachusetts
Reagan R 1911 3 ? Republican | lllinois

Note that the quoted string ' €' is not the same as ' €%/'. This pattern would match only strings
containing two characters with an 'e' in the second position.

5.2.11 Question
List all facts available in the table named RECENT_PRESIDENTS about presidents whose name has
the letter e’ in the second position, and not the letter 'R" in the first position.

SELECT *

FROM RECENT_PRESIDENTS

WHERE PRES_NAME LIKE '_e%'
AND PRES_NAME NOT LIKE 'R%'

Result:
PRES NAME | BIRTH_YR | YRS _SERV | DEATH _AGE | PARTY STATE_BORN
Kennedy J F 1917 2 46 Democratic | Massachusetts
5.2.12 Addition: remark I on ‘NVULL’-values

NULL-values must be seen as an indication of ‘at this moment unknown’. Every (ex-) president
sometime will die and only then can become a well-defined value of DEATH_AGE, but before
decease that value is still unknown; so ‘NULL’.

Therefore selection-comparisons in a WHERE-clause can have 3 possible values: ‘true’, ‘false’ and
‘unknown’. Only in the case of ‘true’ the concerning table rows will be shown.

As a consequence, in the result generated by the next query:

SELECT *
FROM RECENT_PRESIDENTS
WHERE DEATH_AGE=90 OR DEATH_AGE <> 90

no rows with NULL-values will appear!

To select the table rows with (or on the contrary: without) NULL-values, you must use explicitly the
test ‘IS NULL’ respectively ‘IS NOT NULL’.

NIII / Radboud University of Nijmegen (the Netherlands) 16

Reader on SQL (Structured Query Language)

6 Built-in ‘aggregate’ Functions (AVG, SUM, MIN, MAX, COUNT)

There are five built-in ‘aggregate’ functions: AVG, SUM, MIN, MAX and COUNT.

AVG

SUM

MIN

MAX

COUNT

can be applied to any numeric column or expression, and calculates the average of the
values for that column or expression. Null values are ignored in this calculation. If all the
values are null, or the set of values is empty, the result of the calculation is null.

The AVG function can be used with or without the keyword DISTINCT.

If AVG (column-name) is used, then the average is computed for all values in the column,
including duplicates.

If AVG (DISTINCT column-name) is used, then the average is computed only for the
different values in the column, i.e. excluding duplicates.

Example:

A
10
6
6
6
AVG (A) =>7 (10+6+6+6)/4=7
AVG (DISTINCT A) => 8 (10+6)/2=8

can be applied to any numeric column or expression, and calculates the sum of the values.
Null values are ignored. If all the values are null, or the set of values is empty, the result of
the calculation is also null.

The SUM function can also be used with or without the keyword DISTINCT.

can be applied to any column or expression; and determines the smallest value. If applied
to non-numeric values, ASCII (American Standard Code for Information Interchange)
ordering is assumed.

can be applied to any column or expression, and determines the largest value. If applied to
non-numeric values ASCII (American Standard Code for Information Interchange)
ordering is assumed.

can be applied to a table or a column, and determines the number of rows in the table or
field values for the column. There are two cases:
o COUNT (*) determines the number of rows in a table. If the table is empty, then
the value of the COUNT function is zero.
o COUNT (DISTINCT column-name) determines the number of unique field values
for a column, excluding null values. If no non-null values are found, the value of the
COUNT function is null.

Note: The object of a function must be enclosed in parentheses.

From here on in this text our examples will make use of the Presidential database. This database
consists of a number of tables, described in Appendix 1 and 2 of this manual.

6.1.1 Question
Show the average age at death of deceased presidents.

Result:

SELECT AVG (DEATH_AGE)
FROM PRESIDENT

AVG (DEATH_AGE)

68.85

NIII / Radboud University of Nijmegen (the Netherlands) 17

Reader on SQL (Structured Query Language)

e Since null values are ignored, only deceased presidents are considered.

e Some database systems will give the user a message if nulls are ignored in computation.
e Some database systems will show (if any) another header/column-name for the result.

e Some database systems will round or trunc the numeric result.

6.1.2 Question
Show the total number of marriages and the total of the number of children of all presidents.

SELECT COUNT (*), SUM (NR_CHILDREN)
FROM PRES_MARRIAGE

Result:

COUNT (*) | SUM (NR_CHILDREN)
44 143

6.1.3 Question
Show the age at death of the Democratic president who died the oldest.

SELECT MAX (DEATH_AGE)
FROM PRESIDENT
WHERE PARTY = 'Democratic'

As anticipated, the system probably warns of the null condition being encountered with some message.

Result:

MAX (DEATH_AGE)
88

Aggregate functions can only be applied in the SELECT clause (or in the HAVING clause as we will
see in a next chapter). If used in the SELECT clause, there must be an aggregate function applied to all
items of the SELECT list, unless the grouping feature (see a following chapter) is used.

6.1.4 Example 1:
Look at the following (incorrect!) query.

SELECT PARTY, COUNT (*)
FROM PRESIDENT
WHERE PARTY = 'Republican’

This is incorrect syntax, because PARTY is not used with a function. The system will come back with

some error-message like the following:
AN SQL ERROR HAS OCCURED
AN ITEM IN A SELECT-CLAUSE OR IN A HAVING CLAUSE WAS NEITHER A BUILT-IN FUNCTION
NOR A COLUMN IN THE GROUP BY SPECIFICATION

This can be corrected by also applying a function to PARTY which can only be MIN or MAX, since it
is a character field. Whether we choose MIN or MAX is in this case irrelevant, because only
Republican presidents are selected, so both the maximum and the minimum value of the party-name
will be ‘Republican’.

NIII / Radboud University of Nijmegen (the Netherlands) 18

Reader on SQL (Structured Query Language)

6.1.5 Question
SELECT MIN (PARTY), COUNT (*)
FROM PRESIDENT
WHERE PARTY = 'Republican’

Result:

MIN (PARTY) | COUNT (*)
Republican 16

6.1.6 Example 2: Question
Show the age at death of the president who died the youngest.

SELECT MIN (DEATH_AGE)
FROM PRESIDENT

Note: Before giving the result the system can give a message about ignoring null values.

Result:

MIN (DEATH_AGE)
46

The temptation arises to ask which president this was. The novice user sometimes tries the following
(incorrect!) SQL query:

SELECT PRES_NAME, MIN (DEATH_AGE)
FROM PRESIDENT

The system will again come back with some error-message.

Indeed this was a mismatch. MIN (DEATH_AGE) is a characteristic of a group of presidents while
PRES NAME is the name of a specific president.

In this case it is not so easy to find a solution for this question. The solution to this problem needs a
subquery-construction, which is treated in one of the following chapters (about subqueries).

6.1.7 Question

How many inaugurations were there altogether?

SELECT COUNT (*)
FROM ADMINISTRATION

Result:

COUNT (*)
58

6.1.8 Question
How many individual presidents were there?

SELECT COUNT (DISTINCT PRES_NAME)
FROM ADMINISTRATION

Result: 39

Note: We could have obtained the same result simply by counting the rows in the table named
PRESIDENT by using SELECT COUNT (*) FROM PRESIDENT.

NIII / Radboud University of Nijmegen (the Netherlands) 19

Reader on SQL (Structured Query Language)

We chose however the table named ADMINISTRATION in order to show the use of the
DISTINCT operator within a COUNT function.

6.1.9 Question
How many presidential marriages were there altogether?

SELECT COUNT (*)
FROM PRES_MARRIAGE

Result: 44

6.1.10 Question
How many married presidents were there altogether?

SELECT COUNT (DISTINCT PRES_NAME)
FROM PRES_MARRIAGE

Result: 38

Observation: MicroSofts MS Access RDBMS can not get on with this COUNT(DISTINCT ...) construction!

6.2 A dangerous extension in the SELECT-clause: assimilation of a complete query
Many SQL-systems support as an extension of the possible expressions in a SELECT-clause that [the
result of] a complete query is included in a comma-list. A condition is that such a second query must
be put in round brackets and that its result is only a single value.

A severe warning is given here, as in this way it is possible to generate absurd surveys without a
realistic meaning.

E.g. the query:
SELECT pres_name, (SELECT COUNT(*) FROM president) AS XX
FROM president
WHERE pres_name like "F%"

with the result:

PRES _NAME XX
Fillmore M 39
Ford GR 39

but what does it mean? It looks like “just data, without any informational content...”

Or even worse:
SELECT pres_name, (SELECT spouse_name FROM pres_marriage
WHERE pres_name LIKE "Monroe%") AS XX
FROM president
WHERE pres_name like "F%"
with its result:

PRES_NAME | XX
Fillmore M Kortright E
Ford GR Kortright E

for sure has no realistic meaning...

This extension mostly only delivers meaningful results if the second query can be ‘correlated’ to the
main query (see chapter 12: correlated [sub]queries).
So be careful with this extension! In general: don’t use it if there are better structured constructs!

NIII / Radboud University of Nijmegen (the Netherlands) 20

Reader on SQL (Structured Query Language)

7 Calculations through ‘scalar’ operators (+ - */..)

The following arithmetic ‘scalar’ operators may be used in numeric expressions:

+ Addition

- Subtraction

* Multiplication
/ Division

They may be used in the SELECT item list as well as within the WHERE clause. The following
examples illustrate the use of arithmetic operations.

Observations/additions:

e In some database systems the ‘/’-operator is implemented to be used as ‘integer’-division, where
rounding off, but also truncation of the numeric result can occur. In other systems the division-result
can be a ‘real’-number.

e The above given operators all act on numeric values. In most systems also exist operations on string
values, like the concatenation of strings. Such string concatenation then can be realized (depending on
the database system) via for instance an operator as ‘||’, ‘+’ or ‘&’.

7.1.1 Question
Show the average age at death of deceased presidents.

To calculate the average, not using the AVG function, but using the SUM and COUNT functions, we
can write:

SELECT SUM (DEATH_AGE)/ COUNT (*)
FROM PRESIDENT

The SQL system may give something like the following messages:
ARI5021 FOLLOWING SQL WARNING CONDITION ENCOUNTERED:TRUNCATION
ARI5021 FOLLOWING SQL WARNING CONDITION ENCOUNTERED:NULL IGNORED

Thereafter we get the result: 61

If we compare this result with the result of Q7.01 (68.85) we see that there is a substantial difference.
The query above did not give us the right result because the SUM runction is applied only to the non-
null values of DEATH_AGE (deceased presidents), while the COUNT function is applied to all rows

of the PRESIDENT table (deceased or alive presidents). To obtain the right result, we have to
eliminate the rows where DEATH_AGE is null:

7.1.2 Question
SELECT SUM (DEATH_AGE)/ COUNT (*)
FROM PRESIDENT
WHERE DEATH_AGE IS NOT NULL

The SQL system may give a message like:
FOLLOWING SQL WARNING CONDITION ENCOUNTERED: TRUNCATION

Thereafter we get the result: 61

NIII / Radboud University of Nijmegen (the Netherlands) 21

Reader on SQL (Structured Query Language)

Since the division has integer operands, the result is truncated. Thus, we obtain a slightly different
result from the case where we used the AVG function (see Question 7.01).
How you avoid truncation will be discussed under Question 8.05.

7.1.3 Question
Find those deceased politicians who served more than 10% of their lives as president. List their names
and this percentage.

SELECT PRES_NAME, 100 * YRS_SERV/DEATH_AGE
FROM PRESIDENT
WHERE (100 * YRS_SERV / DEATH_AGE) > 10

AND DEATH_AGE IS NOT NULL

The system may give the following message:
ARI5021 FOLLOWING SQL WARNING CONDITION ENCOUNTERED: TRUNCATION

If we use a system that truncates the numeric results, then we get as:

Result:
PRES_NAME | 100 * YRS_SERV/DEATH_AGE
GrantU S 12
Cleveland G 11
Roosevelt T 11
Wilson W 11
Roosevelt F D 19

Depending on the system it will be possible to change the column names to be more user-friendly.

7.1.4 Question
Give the name and age of president and spouse for those marriages where the president was at least 5
years older than the spouse and the spouse was less than 20 years old.

SELECT PRES_NAME, SPOUSE_NAME, PR_AGE, SP_AGE
FROM PRES_MARRIAGE
WHERE PR_AGE > SP_AGE + 5
AND SP_AGE <20
Result:
PRES_NAME SPOUSE_NAME | PR_AGE | SP_AGE
Adams J Smith A 28 19
Monroe J Kortright E 27 17
Eisenhower D D | Doud G 25 19

7.1.5

Which presidents were no more than 10% older than their spouse(s) at the time of marriage! List their
name, their age at marriage, their spouse's age at marriage and the ratio of the president's age to his

Question

spouse's age as a decimal number.

Let us first look at the following SQL formulation:

7.1.6

NIII / Radboud University of Nijmegen (the Netherlands)

Question (a)

SELECT PRES_NAME, PR_AGE, SP_AGE, PR_AGE/SP_AGE
FROM PRES_MARRIAGE
WHERE PR_AGE /SP_AGE BETWEEN 1 AND 1.1

22

Reader on SQL (Structured Query Language)

If the system will apply truncation, it may give a message about that truncation and afterwards give
(37) result-rows, but most of them are not useful to us.

There will be unexpected errors in the answer. Take for example Adams J. His age was 28 and that of
his spouse was 19, and 28/19 = 1.47 which is clearly outside the range between 1 and 1.1. This
unexpected result arises from the fact that the columns PR_AGE and SP_AGE are both integers, and
integer division in SQL truncates fractional results.

Note that for example 11/10=1, 15/10=1, 19/10 =1, 20/10 =2, 24/10 = 2 etc.

One can easily avoid such problems and get the expected results by prefixing the division expression
with a multiplication by a decimal number such as 1.0.

In our example the query in SQL then becomes:

7.1.7 Question (b)
SELECT PRES_NAME, PR_AGE , SP_AGE, 1.0 * PR_AGE / SP_AGE
FROM PRES_MARRIAGE
WHERE 1.0 * PR_AGE / SP_AGE BETWEEN 1.0 AND 1.1

Now there is no warning because we have a division of decimal numbers and the exact result is
displayed as follows:

PRES NAME | PR_AGE | SP_AGE | 1.0 * PR_AGE/SP_AGE
Jackson A 26 26 1.00
Van Buren M 24 23 1.04
Harrison W H 22 20 1.10
Tyler J 23 22 1.04
Pierce F 29 28 1.03
Garfield J A 26 26 1.00
Hoover H C 24 23 1.04
Truman H S 35 34 1.02

NIII / Radboud University of Nijmegen (the Netherlands) 23

Reader on SQL (Structured Query Language)

8 The Grouping Feature (Group By .../ Having ...)

Suppose we want to know the number of presidents in each party. With the SQL features discussed so
far, this would require repeatedly inquiring about each party, as follows:

SELECT COUNT (%)

FROM PRESIDENT

WHERE PARTY = 'Demo-Rep’ Result: 4
SELECT COUNT (*)

FROM PRESIDENT

WHERE PARTY = 'Democratic’ Result: 13
SELECT COUNT (*)

FROM PRESIDENT

WHERE PARTY = 'Federalist' Result: 2
SELECT COUNT (%)

FROM PRESIDENT

WHERE PARTY = 'Republican’ Result: 16
SELECT COUNT (*)

FROM PRESIDENT

WHERE PARTY = 'Whig' Result: 4

It is obvious that this is a tedious procedure. Furthermore one has to know all the party names. This
list could have been retrieved with the command SELECT DISTINCT PARTY FROM PRESIDENT,
but then the user would still need to type a separate SELECT command for each party to find out the
number or presidents in that party.

The operation we would actually want to do in such cases is to apply a built-in aggregate function
(AVG, SUM, MIN, MAX, COUNT) or a calculation to each one or a number of specific subcategories
of that column or table. The features we have introduced so far are not well suited to handle this kind
of query. Such queries can however be handled easily by using the grouping feature, expressed by the
GROUP BY clause.

SELECT

FROM

[WHERE]

[GROUP BY column-name, or list-or-column-names]

The effect of this GROUP BY clause on the query is that any calculation or function in the SELECT
clause is applied to each individual group of elements specified in the GROUP BY clause; thus
generating one single row in the result per each group.

The GROUP BY feature is very powerful and deserves additional explanation.

Let us look at the result of the following query:

SELECT *
FROM PRESIDENT
ORDER BY PARTY

The result is presented in the next figure.

NIII / Radboud University of Nijmegen (the Netherlands) 24

Reader on SQL (Structured Query Language)

PRES_NAME BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN Group nr
Adams J Q 1767 4 80 "Demo-Rep | Massachusefts |~~~ ~
Monroe J 1758 8 73 Demo-Rep | Virginia 1
Jefferson T 1743 8 83 Demo-Rep | Virginia

Madison J 1751 8 85 Demo-Rep | Virginia

Kennedy J F 1917 2 46 Democratic | Massachusetts |~~~
TrumanH S 1884 7 88 Democratic | Missouri

Pierce F 1804 4 64 Democratic | New Hampshire

Cleveland G 1837 8 71 Democratic | New Jersey

Roosevelt F D 1882 12 63 Democratic | New York

Van Buren M 1782 4 79 Democratic | New York 2
Polk J K 1795 4 53 Democratic | North Carolina

Johnson A 1808 3 66 Democratic | North Carolina

Buchanan J 1791 4 77 Democratic | Pennsylvania

Jackson A 1767 8 78 Democratic | South Carolina

Johnson L B 1908 5 65 Democratic | Texas

Wilson W 1856 8 67 Democratic | Virginia

Carter JE 1924 4 ? Democratic | Georgia_ _ _ _ _ | ______.
Adams J 1735 4 90 Federalist Massachusetts 3
Washington G 1732 7 67 Federalist_ | Virginia _ _ __ _| ______.
Hoover H C 1874 4 90 Republican | lowa

Lincoln A 1809 4 56 Republican | Kentucky

Roosevelt T 1858 7 60 Republican | New York

Garfield J A 1831 0 49 Republican | Ohio

Harding W G 1865 2 57 Republican | Ohio

McKinley W 1843 4 58 Republican | Ohio

GrantU S 1822 8 63 Republican | Ohio

Harrison B 1833 4 67 Republican | Ohio

Hayes R B 1822 4 70 Republican | Ohio 4
Taft WH 1857 4 72 Republican | Ohio

Eisenhower D D 1890 8 79 Republican | Texas

Arthur C A 1830 3 56 Republican | Vermont

Coolidge C 1872 5 60 Republican | Vermont

Nixon R M 1913 5 ? Republican | California

Reagan R 1911 3 ? Republican | lllinois

Ford GR 1913 2 ? Repubtican 4 Nebraska- - --+-------
Fillmore M 1800 2 74 Whig New York

Taylor Z 1784 1 65 Whig Virginia 5
Harrison W H 1773 0 68 Whig Virginia

Tyler J 1790 3 71 Whig- - - -1 -Virginiga -~ -~-~-7-—————"

The count to the right as well as it’s heading was done by the authors and is not displayed on the
screen. We see that there are 5 groups of rows in the table PRESIDENT, corresponding to the 5

parties.

The GROUP BY clause has the following effect upon the operation of the SELECT: All functions in
the SELECT clause operate on each group within a table, independent of the number of groups.

If we apply to our example, GROUP BY PARTY, then all functions specified in the SELECT clause
will be computed once for each of the 5 groups of parties.

8.1.1

Question

For each party, count the number of presidents who belonged to this party. List the name of each
party, together with this count.

To count the number of presidents irrespective of party we would issue the following SQL query:

SELECT
FROM

NIII / Radboud University of Nijmegen (the Netherlands)

COUNT (*)

PRESIDENT

25

Reader on SQL (Structured Query Language)

This query counts the number of presidents in the entire PRESIDENT table.

Result: 39

If we actually want to count the number of presidents which belonged to each party, we need to use
the GROUP BY feature.

If we had to perform this task without SQL, we would take the table PRESIDENT and form as many
groups of rows as there are parties. In this case, there are five parties, thus there are five corresponding
groups of rows. We would then count the number of rows in each group of rows to give the required
result.

In SQL we do basically the same. First, since we want to display the names of parties corresponding to
the groups, we have to specify the column-name PARTY in the SELECT clause. Secondly we specify
that we want the count of members in each party group.

SELECT PARTY, COUNT (*)
FROM PRESIDENT
GROUP BY PARTY
ORDERBY PARTY

Note that if the query contains a GROUP BY clause, then any column in the SELECT list must either
be contained in the GROUP BY clause or have a built in aggregate function applied to it.

Result:
PARTY COUNT (¥)
Demo-Rep 4
Democratic 13
Federalist 2
Republican 16
Whig 4

8.1.2 Question
For each state, count the number of presidents born in that state. List the state name together with this
count, and present in ascending order, and within the same count sort by ascending state name.

SELECT STATE_BORN, COUNT (*)
FROM PRESIDENT

GROUP BY STATE_BORN

ORDERBY 2, STATE_BORN

Note:
The number 2 in the ORDER BY clause refers to the second item in the SELECT list COUNT (*).

This is necessary since only columns can be referred to by their name.

Result:

STATE_BORN | COUNT (%)
California
Georgia

lllinois

lowa

Kentucky
Missouri
Nebraska

New Hampshire
New Jersey
Pennsylvania
South Carolina

Alalalalalalalalalala

NIII / Radboud University of Nijmegen (the Netherlands) 26

Reader on SQL (Structured Query Language)

North Carolina
Texas
Vermont
Massachusetts
New York
Ohio

Virginia

O NR|WINININ

8.1.3 Question

For each party, calculate the total number of years served by presidents of that party, the number of
presidents, and the average number of years served. List the party, total number of years served,
number of presidents, and average number of years served.

SELECT PARTY, SUM (YRS_SERV), COUNT (*), AVG (YRS_SERV)
FROM PRESIDENT

GROUP BY PARTY

ORDERBY PARTY

Result:
PARTY SUM | COUNT | AVG
Demo-Rep 28 4 7
Democratic 73 13 6
Federalist 11 2 6
Republican 67 16 4
Whig 6 4 2

The list of column names in the GROUP BY clause is not restricted to a single column. Several
column names mean that there are several criteria for grouping, or several dimensions of grouping. In
the following example, we show a two-dimensional grouping. Let us look at the result of the following

query:

SELECT *
FROM PRESIDENT
ORDER BY PARTY, STATE_BORN, PRES_NAME

The result is presented in the next figure.

If we apply the clause GROUP BY PARTY, STATE_BORN to the PRESIDENT table, then all
functions specified in the SELECT clause will be computed once for each of the 26 party / state-born
combinations.

PRES_NAME BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN Group nr
Adams J Q 1767 4 80 "Demo-Rep | Massachusetts |~~~ 17
Jefferson T 1743 8 83 Demo-Rep | Virginia~ ~~~ "~~~ ~~7°
Madison J 1751 8 85 Demo-Rep | Virginia 2
Monroe J 1758 8 73 Demo-Rep | Virginia |
Carter JE 1924 4 ? Democratic | Georgia __.3__
Kennedy J F 1917 2 46 Democratic | Massachusetts _ | _ _ 4__ _.
TrumanH S 1884 7 88 Democratic | Missouri __.5__.
Pierce F 1804 4 64 Democratic | New Hampshire | _ _ 6 _ _.
Cleveland G 1837 8 71 Democratic | New Jersey ___1.__.
Roosevelt F D 1882 12 63 Democratic | New York

Van Buren M 1782 4 79 Democratic | NewYork_ _ _ _| ___ EE .
Johnson A 1808 3 66 Democratic | North Carolina

Polk J K 1795 4 53 Democratic | North Caroling _ | _ _ _ 9 ..
Buchanan J 1791 4 77 Democratic_ | Pennsylvania_ _ | _ _10__.
Jackson A 1767 8 78 Democratic | South Carolina_ | _ _ 11 _.
Johnson L B 1908 5 65 Democratic | Texas __12__.
Wilson W 1856 8 67 _Democratic_| Virginia_ __ | __13__.

NIII / Radboud University of Nijmegen (the Netherlands) 27

Reader on SQL (Structured Query Language)

Adams J 1735 4 90 Federalist Massachusetts | 14 _ _.
Washington G 1732 7 67 Federalist_ | Virginia ___ | __15__.
Nixon R M 1913 5 ? Republican | California __16__.
Reagan R 1911 3 ? Republican | lllinois I VA
Hoover H C 1874 4 90 Republican | lowa_ _ _ ___ | __18 __.
Lincoln A 1809 4 56 Republican | Kentucky _ | 19 _ _.
Ford GR 1913 2 ? Republican | Nebraska_ _ _ _ [__20__.
Roosevelt T 1858 7 60 _Republican_| New York_ _ _ _|__21__.
Garfield J A 1831 0 49 Republican | Ohio

GrantU S 1822 8 63 Republican | Ohio

Harding W G 1865 2 57 Republican | Ohio

Harrison B 1833 4 67 Republican | Ohio 22
Hayes R B 1822 4 70 Republican | Ohio

McKinley W 1843 4 58 Republican | Ohio

Taft WH 1857 4 72 Republican | Qhio_ _ _ _ __ _ | ______.
Eisenhower D D 1890 8 79 Republican | Texas_ _ _ _ _ _| __ 23
Arthur C A 1830 3 56 Republican | Vermont 24
Coolidge C 1872 5 60 Republican_| Vermont _ _ _ _ 1 ______.
Fillmore M 1800 2 74 Whig New York _25
Harrison W H 1773 0 68 Whig Virginia

Taylor Z 1784 1 65 Whig Virginia 26
Tyler J 1790 3 71 Whig _ __ | Mirginia _ ____1______.

8.1.4 Question
Count the presidents who were members of the same party and who were born in the same state. List
party, state of birth, and this count.

SELECT PARTY, STATE_BORN , COUNT (*)
FROM PRESIDENT

GROUP BY PARTY, STATE_BORN

ORDERBY 1,2

Result:

PARTY STATE_BORN | COUNT(*)
Demo-Rep | Massachusetts
Demo-Rep | Virginia
Democratic | Georgia
Democratic | Massachusetts
Democratic | Missouri
Democratic | New Hampshire
Democratic | New Jersey
Democratic | New York
Democratic | North Carolina
Democratic | Pennsylvania
Democratic | South Carolina
Democratic | Texas
Democratic | Virginia
Federalist Massachusetts
Federalist Virginia
Republican | California
Republican | lllinois
Republican | lowa
Republican | Kentucky
Republican | Nebraska
Republican | New York
Republican | Ohio
Republican | Texas
Republican | Vermont

Whig New York
Whig Virginia

wlaNalNmlalalalalalalalalalalalNN alalalalalw]|—

NIII / Radboud University of Nijmegen (the Netherlands) 28

Reader on SQL (Structured Query Language)

The groups formed can be illustrated by a two dimensional matrix, where one dimension is PARTY,
and the other is STATE _BORN:

STATE- PARTY PARTY PARTY | PARTY PARTY
BORN Federalist | Demo-Rep | Whig Democratic | Republican
Virginia + +++ +++ +

Massachusetts | + + +

South Carolina +

New York + ++ +

North Carolina ++

New Hampshire +

Pennsylvania +

Kentucky +

Ohio +++++++
Vermont ++

New Jersey +

lowa +
Missouri +

Texas + +
California +
Nebraska +
Georgia +

lllinois +

Each field with at least one plus sign in the matrix represents a group. Each plus sign in the matrix
represents a president. The COUNT function is applied to each one of these groups.

8.1.5

Question

For each birth state / party combination, count the presidents who were born in that state and who
were members of that party. List state, party and this count.

Result:

SELECT STATE_BORN, PARTY, COUNT (*)
FROM PRESIDENT
GROUP BY STATE_BORN, PARTY
ORDERBY 1,2
STATE_BORN | PARTY COUNT
California Republican 1
Georgia Democratic 1
lllinois Republican 1
lowa Republican 1
Kentucky Republican 1
Massachusetts | Demo-Rep 1
Massachusetts | Democratic 1
Massachusetts | Federalist 1
Missouri Democratic 1
Nebraska Republican 1
New Hampshire | Democratic 1
New Jersey Democratic 1
New York Democratic 2
New York Republican 1
New York Whig 1
North Carolina Democratic 2
Ohio Republican 7
Pennsylvania Democratic 1
South Carolina | Democratic 1
Texas Democratic 1
Texas Republican 1
Vermont Republican 2

NIII / Radboud University of Nijmegen (the Netherlands) 29

Reader on SQL (Structured Query Language)

Virginia Demo-Rep 3
Virginia Democratic 1
Virginia Federalist 1
Virginia Whig 3

Please note that the count is the same as in the previous question, but the results are presented in a
different order. The sequence of column names in the GROUP BY clause is not relevant to the order
of display, but the sequence of column names in the ORDER BY clause does affect the order.

It is also possible to apply a WHERE clause together with a GROUP BY clause. In such a case the
WHERE clause acts as a sieve, removing those rows which do not satisfy the search condition. After
unwanted rows are removed, the groups are formed and the built-in aggregate functions are applied to
the rows in each group.

8.1.6 Question
For each party, list the party name and the number of presidents born after the year 1850.

SELECT PARTY, COUNT (%)
FROM PRESIDENT
WHERE BIRTH_YR > 1850
GROUP BY PARTY

Result:

PARTY COUNT
Democratic 6
Republican 9

If we apply a WHERE clause together with a GROUP BY clause, we restrict the number of rows
which form the various groups. If we wish rather to restrict the groups themselves, we have to specify
a condition on the selection of groups. This is achieved with the HAVING clause:

SELECT

FROM

[WHERE condition]

[GROUP BY column-name, or list-of-column-names]
[HAVING condition |

The HAVING clause relates to the GROUP BY clause in the same way as the WHERE clause relates
to the FROM clause. A WHERE clause is applied to each row before the groups are formed, while a
HAVING clause is applied to each group.

The following examples illustrate the use of the HAVING clause.

8.1.7 Question
List the names of presidents and the number of their marriages for those presidents who married more
than once.

We group the PRES MARRIAGE table into groups having the same president (GROUP BY
PRES NAME). We then want to retain only those groups which have more than one marriage
(HAVING COUNT (*) >1).

= With the HAVING clause one selects or rejects groups.
= With the WHERE clause one selects or rejects individual rows.

NIII / Radboud University of Nijmegen (the Netherlands) 30

Reader on SQL (Structured Query Language)

SELECT PRES_NAME, COUNT (*)
FROM PRES_MARRIAGE
GROUP BY PRES_NAME

HAVING COUNT (9 > 1

Result:

PRES_NAME | COUNT
Fillmore M
Harrison B
Reagan R
Roosevelt T
Tyler J
Wilson W

NININ[NININ

8.1.8 Question
For those parties which had more than 8 presidents born after 1850, list the names of the parties and
the corresponding number of presidents born after 1850.

A typical erroneous (!) solution is as follows:

SELECT PARTY, COUNT (*)

FROM PRESIDENT
WHERE BIRTH YR > 1850
AND COUNT (*)>38 (erroneous !')

GROUP BY PARTY

The SQL system will return something like the following error-message:
AN SQL PROCESSING ERROR HAS OCCURRED. A BUILT-IN AGGREGATE FUNCTION SHOULD
NOT OCCUR IN A WHERE-CLAUSE OR AS THE VALUE TO BE ASSIGNED TO A COLUMN IN A
SET-CLAUSE OF AN UPDATE STATEMENT.

The error is that the condition that an individual president be born after 1850 is clearly a row condition
and therefore belongs to the WHERE clause. However, COUNT (*) > 8 is a condition which cannot
apply to a row because COUNT (*) deals with an entire table or group. Therefore COUNT (*) > 8 has
to come in the HAVING clause.

Correct solution:
SELECT PARTY, COUNT (%)
FROM PRESIDENT
WHERE BIRTH_YR > 1850
GROUP BY PARTY
HAVING COUNT (*)>8

Result:

PARTY COUNT
Republican 9

8.1.9 Question

Find those presidents who married at least twice and whose maximum number of children in any of
their marriages exceeds their minimum number or children by at least 2. List their names, and the
maximum and minimum number of children.

We find the relevant information in the table PRES MARRIAGE. Since we consider all married
presidents, we have no WHERE clause in this case. But since a president may occur in several rows
(marriages) of the table, and since we want to apply various functions (COUNT, MIN, MAX) to all
marriages of a president, we have to group by president.

NIII / Radboud University of Nijmegen (the Netherlands) 31

Reader on SQL (Structured Query Language)

That means that we have groups of rows in the table PRES MARRIAGE where the field

PRES NAME is equal for each row of the group. But we do not consider all PRES_NAME groups:
only those fulfilling a specific condition, which has to be specified in a HAVING clause. Altogether,
the retrieval command is as follows:

SELECT PRES_NAME , MAX (NR_CHILDREN) , MIN (NR_CHILDREN)

FROM PRES_MARRIAGE

GROUP BY PRES_NAME

HAVING COUNT (*) >=2 AND MAX (NR_CHILDREN) >= MIN (NR_CHILDREN) + 2

Result:

PRES_NAME | M
Fillmore M
Roosevelt T
Wilson W

C»)(ﬂl\);

MIN
0
1
0

NIII / Radboud University of Nijmegen (the Netherlands) 32

Reader on SQL (Structured Query Language)

9 Selecting Columns and Rows From Several Tables (joins’)

All the SQL queries discussed in the preceding chapters have retrieved information from a single
table.

One of the most useful and powerful functions in SQL is the ability to retrieve with one SQL
command, information from more than one table.

In the Relational Data Model literature this operation is known as a JOIN. The practically unrestricted
JOIN operation is a major difference between the powerful 4th generation database systems and third
generation database systems

Even when used on several tables, the SELECT command retains the same basic format as we have
seen previously. The SELECT clause specifies the names of the columns we wish to retrieve from the
tables, and these tables are listed in the FROM clause.

Let us first look at a simple example, dealing with the two tables presented in next figures.

P TABLE M _TABLE

PRES NAME|BIRTH YR PRES NAME |[SPOUSE NAME
Buchanan J 1791 Harrison B Scott CL
Harrison B 1833 Harrison B Dimmick M S L
Nixon R M 1913 Nixon R M Ryan T C

Reagan R 1911 Reagan R Wyman J

Reagan R Davis N

AW N ==

DN AW -

We have selected to operate on the smaller tables of these figures because of the lengthy results
possible with unrestricted joins.

If we join both tables and include all columns, we would produce as the result a table with 4 columns
as follows:

P TABLE M_TABLE
PRES_NAME | BIRTH YR | PRES_NAME | SPOUSE_NAME

In order to distinguish between the two columns with the name PRES NAME we have to qualify each
column name with a prefix which is the name of the table from which the column is retrieved. The
format of the qualified column name is as follows:

table-name.column-name

Qualification is not necessary if the column names are distinct among the tables included in the join.
In our example this means there is no need to prefix the columns BIRTH YR and SPOUSE_NAME
with the names of the tables they are retrieved from. When qualifying a column name, there must be a
period and no other character or space between the table name and the column name.

9.1.1 Question

If we want to produce as a result a table with 4 columns, where each row consists of the president
name of the P_ TABLE and his birth year followed by the president name of M_TABLE and spouse
name, for all possible combinations, we have to write the following SQL query:

SELECT P_TABLE.PRES_NAME, BIRTH_YR, M_TABLE.PRES_NAME,
SPOUSE_NAME

FROM P_TABLE, M_TABLE

ORDER BY P_TABLE.PRES_NAME

NIII / Radboud University of Nijmegen (the Netherlands) 33

Reader on SQL (Structured Query Language)

We get as result the table of the next figure with 4 columns and 20(!!) rows.

Result:
PRES_NAME | BIRTH_YR | PRES_NAME | SPOUSE_NAME

1 Buchanan J 1791 Harrison B Scott C L

2 Buchanan J 1791 Harrison B Dimmick M S L
3 Buchanan J 1791 Nixon R M RyanTC

4 Buchanan J 1791 Reagan R Wyman J

5 Buchanan J 1791 Reagan R Davis N

6 Harrison B 1833 Harrison B Scott C L

7 Harrison B 1833 Harrison B Dimmick M S L
8 Harrison B 1833 Nixon R M RyanTC

9 Harrison B 1833 Reagan R Wyman J

10 Harrison B 1833 Reagan R Davis N

11 Nixon R M 1913 Harrison B Scott C L

12 Nixon R M 1913 Harrison B Dimmick M S L
13 Nixon R M 1913 Nixon R M RyanTC

14 Nixon R M 1913 Reagan R Wyman J

15 Nixon R M 1913 Reagan R Davis N

16 Reagan R 1911 Harrison B Scott C L

17 Reagan R 1911 Harrison B Dimmick M S L
18 Reagan R 1911 Nixon R M RyanTC

19 Reagan R 1911 Reagan R Wyman J

20 Reagan R 1911 Reagan R Davis N

In general, if there is more than one table listed in the FROM clause and there is no WHERE, GROUP
BY, or HAVING clause, then the SQL system will produce as result a table in which the number of
rows is equal to the product of the number of rows of the tables in the FROM clause. In other words,
all possible combinations of rows from the tables listed in the FROM clause are listed in the result.
Each row of each table is combined with each row of each other table in the FROM clause. Of course,
this is a useful result only in exceptional cases, and it does tend to use enormous quantities of
computer resources.

We want to emphasise that the result of specifying two or more table names in the FROM clause is
again a table, and it is on this product table that the WHERE, GROUP BY, HAVING and ORDER BY
clauses operate.

The join with all possible combinations of rows, i.e. a join with only the SELECT clause and the
FROM clause is not normally a desirable result. However, it has shown to be an excellent concept to
think of a join as if it was a normal SELECT on one table, namely the table with all columns from the
tables specified in the FROM clause and all possible combinations or rows from these tables. The
columns specified in the SELECT clause are the ones desired in the result and the WHERE clause
specifies which rows are to be included in the result.

The part of the WHERE clause which specifies a condition between two columns in the originally
separate tables is called a join-condition. All other parts of the WHERE clause are called search-
conditions.

Let us now look at a more practical question, where we will retain only meaningful combinations of
rows, and where we will not ask for the common column to be repeated in the result.

9.1.2 Question
List the name, birth year and spouse names of all married presidents in the tables of the figure with the
P TABLE and M_TABLE.

SELECT P_TABLE.PRES_NAME, BIRTH_YR, SPOUSE_NAME
FROM P_TABLE, M_TABLE
WHERE P_TABLE.PRES_NAME = M_TABLE.PRES_NAME

NIII / Radboud University of Nijmegen (the Netherlands) 34

Reader on SQL (Structured Query Language)

Result:
PRES NAME | BIRTH_YR | SPOUSE_NAME
Harrison B 1833 Scott C L
Harrison B 1833 Dimmick M S L
Nixon R M 1913 Ryan T C
Reagan R 1911 Wyman J
Reagan R 1911 Davis N

The WHERE clause operates on each of the 20 rows of the former figure. Only rows 6, 7, 13, 19 and
20 satisfy the WHERE clause.

An equality operator between two columns of different tables is the most common join condition, as
well as the most efficient. When using other join conditions, keep in mind the potentially enormous
volume or the product table that may have to be scanned.

Up to 16 tables may be listed in the FROM clause. For practical applications this has shown to be a
very safe upper limit.

Let us now return to the sample tables of the presidential database in appendix B.

9.1.3 Question
List names, birth years, marriage years and spouses of all married presidents. Order by president
name.

We find that the information we want to retrieve is contained in two tables, the PRESIDENT table and
the PRES MARRIAGE table. Thus we have to perform a join.

Therefore we have to combine each row of the PRESIDENT table with the corresponding row(s) of
the PRES_ MARRIAGE table where the fields in the column PRES NAME of the

PRES MARRIAGE table are equal to the fields in the column PRES NAME of the PRESIDENT
table. The SELECT clause specifies which columns will be selected from the join of the two tables.

SELECT PRESIDENT.PRES_NAME, BIRTH_YR, MAR_YEAR, SPOUSE_NAME
FROM PRESIDENT, PRES_MARRIAGE

WHERE PRESIDENT.PRES_NAME = PRES_MARRIAGE.PRES_NAME

ORDER BY PRESIDENT.PRES_NAME

Note:

Each reference to a non-unique column name (appearing in more than one table in the FROM clause)
must be prefixed with the table name, hence the ORDER BY (like the SELECT clause) must stipulate
PRESIDENT.PRES NAME.

Result:
PRES_NAME BIRTH_YR | MAR_YEAR | SPOUSE_NAME
Adams J 1735 1764 Smith A
Adams J Q 1767 1797 Johnson L C
Arthur C A 1830 1859 Herndon E L
Carter J E 1924 1946 Smith R
Cleveland G 1837 1886 Folson F
Coolidge C 1872 1905 Goodhue G A
Eisenhower D D 1800 1916 Doud G
Fillmore M 1800 1826 Powers A
Fillmore M 1800 1858 MclIntosh C C
Ford GR 1913 1948 Warren E B
Garfield J A 1831 1858 Rudolph L
GrantU S 1822 1848 Dent J B
Harding W G 1865 1891 De Wolfe F K

NIII / Radboud University of Nijmegen (the Netherlands) 35

Reader on SQL (Structured Query Language)

Note

Because the president Buchanan J is in the PRESIDENT table but not in the PRES MARRIAGE

Harrison B 1833 1853 Scott C L
Harrison B 1833 1896 Dimmick M S L
Harrison W H 1773 1795 Symmes AT
Hayes RB 1822 1852 Webb L W
Hoover HC 1874 1899 Henry L
Jackson A 1767 1794 Robards R D
Jefferson T 1743 1772 Skelton M W
Johnson A 1808 1827 McCardle E
Johnson L B 1908 1934 Taylor CA
Kennedy J F 1917 1953 Bouvier J L
Lincoln A 1809 1842 Todd M
Madison J 1751 1794 ToddDDP
McKinley W 1843 1871 Saxton |
Monroe J 1758 1786 Kortright E
Nixon R M 1913 1940 Ryan T C
Pierce F 1804 1834 Appleton J M
Polk J K 1795 1824 Childress S
Reagan R 1911 1940 Wyman J
Reagan R 1911 1952 Davis N
Roosevelt F D 1882 1905 Roosevelt A E
Roosevelt T 1858 1880 Lee AH
Roosevelt T 1858 1886 Carow E K
Taft WH 1857 1886 Herron H
Taylor Z 1784 1810 Smith M M
Truman H S 1884 1919 Wallace E V
Tyler J 1790 1813 Christian L
Tyler J 1790 1844 Gardiner J
Van Buren M 1782 1807 Hoes H
Washington G 1732 1759 Custis M D
Wilson W 1856 1885 Axson E L
Wilson W 1856 1915 GaltEB

table, he did not satisfy the WHERE clause and is therefore not in our result.

9.1.4 Question

List president name, birth year, the administrations served as president and the vice presidents in each

administration, in order of administration number.

SELECT

WHERE

PRESIDENT, ADMIN_PR_VP

PRESIDENT.PRES_NAME , BIRTH_YR , ADMIN_NR, VICE_PRES_NAME

PRESIDENT.PRES_NAME = ADMIN_PR_VP.PRES_NAME
ORDER BY ADMIN_NR

Please note that the only condition in the WHERE clause is a join-condition.

Result:

PRES_NAME BIRTH_YR | ADMIN_NR | VICE_PRES_NAME
Washington G 1732 1 Adams J
Washington G 1732 2 Adams J
Adams J 1735 3 Jefferson T
Jefferson T 1743 4 Burr A
Jefferson T 1743 5 Clinton G
Madison J 1751 6 Clinton G
Madison J 1751 7 Gerry E
Monroe J 1758 8 Tompkins D
Monroe J 1758 9 Tompkins D
Adams J Q 1767 10 Calhoun J
Jackson A 1767 11 Calhoun J
NIII / Radboud University of Nijmegen (the Netherlands) 36

Reader on SQL (Structured Query Language)

Jackson A 1767 12 Van Buren M
Van Buren M 1782 13 Johnson R M
Harrison W H 1773 14 Tyler J

Polk J K 1795 15 Dallas G M
Taylor Z 1784 16 Fillmore M
Pierce F 1804 17 De Vane King W R
Buchanan J 1791 18 Breckinridge J C
Lincoln A 1809 19 Hamlin H
Lincoln A 1809 20 Johnson A
GrantU S 1822 21 Colfax S
GrantU S 1822 22 Wilson H
Hayes RB 1822 23 Wheeler W
Garfield J A 1831 24 Arthur C A
Cleveland G 1837 25 Hendricks T A
Harrison B 1833 26 Morton L P
Cleveland G 1837 27 Stevenson AE
McKinley W 1843 28 Hobart G A
McKinley W 1843 29 Roosevelt T
Roosevelt T 1858 30 Fairbanks C W
Taft WH 1857 31 ShermanJ S
Wilson W 1856 32 Marshall T R
Wilson W 1856 33 Marshall TR
Harding W G 1865 34 Coolidge C
Coolidge C 1872 35 Dawes C G
Hoover H C 1874 36 Curtis C
Roosevelt F D 1882 37 Garner JN
Roosevelt F D 1882 38 Garner JN
Roosevelt F D 1882 39 Wallace H A
Roosevelt F D 1882 40 TrumanH S
TrumanH S 1884 41 Barkley AW
Eisenhower D D 1890 42 Nixon R M
Eisenhower D D 1890 43 Nixon R M
Kennedy J F 1917 44 Johnson L B
Johnson L B 1908 45 Humphrey HH
Nixon R M 1913 46 Agnew S T
Nixon R M 1913 47 Ford GR
Nixon R M 1913 47 Agnew S T
Ford GR 1913 47 Rockefeller N
Carter J E 1924 48 Mondale W F
Reagan R 1911 49 Bush G

As in previous examples there may be conditions involved in the WHERE clause other than just the
matching condition for the join. e.g. AND BIRTH_YR < 1800.

9.1.5 Question
List the names, birth years and hobbies of all presidents born before 1800. Order by birth year and
president name.

In this case, we have to join the two tables PRESIDENT and PRES HOBBY, such that the fields
PRES NAME are equal in both tables. This equality condition is called the join-condition. The
condition that only those presidents who were born before 1800, is appended to the join condition in
the WHERE clause with the logical operator AND, and is called a search-condition.

SELECT PRESIDENT.PRES_NAME, BIRTH_YR , HOBBY

FROM PRESIDENT, PRES_HOBBY

WHERE PRESIDENT.PRES_NAME = PRES_HOBBY.PRES_NAME
AND BIRTH_YR <1800

ORDER BY BIRTH_YR, PRESIDENT.PRES_NAME

NIII / Radboud University of Nijmegen (the Netherlands) 37

Reader on SQL (Structured Query Language)

Result:

PRES_NAME | BIRTH_YR | HOBBY
Washington G 1732 Fishing
Washington G 1732 Riding
Jefferson T 1743 Fishing
Jefferson T 1743 Riding
Adams J Q 1767 Walking
Adams J Q 1767 Billiards
Adams J Q 1767 Swimming
Jackson A 1767 Riding
Van Buren M 1782 Riding
Taylor Z 1784 Riding

9.1.6 Questio

List name, birth year, marriage years and spouse names of those presidents who were born before

n

1776 and married before 1800. Order the list on president name in ascending order.

SELECT

FROM

WHERE

ORDE

Please note that the first condition in the WHERE clause is a join-condition, while the second and

PRESIDENT, PRES_MARRIAGE

AND
AND
R BY

third are search-conditions.

PRESIDENT.PRES_NAME , BIRTH_YR , MAR_YEAR, SPOUSE_NAME

PRESIDENT.PRES_NAME = PRES_MARRIAGE.PRES_NAME
BIRTH_YR < 1776
MAR_YEAR < 1800
PRESIDENT.PRES_NAME

Result:
PRES_NAME | BIRTH_YR | MAR_YEAR | SPOUSE_NAME
Adams J 1735 1764 Smith A
Adams J Q 1767 1797 Johnson L C
Harrison W H 1773 1795 Symmes AT
Jackson A 1767 1794 Robards R D
Jefferson T 1743 1772 Skelton M W
Madison J 1751 1794 ToddDDP
Monroe J 1758 1786 Kortright E
Washington G 1732 1759 Custis M D

9.1.7 Question

List the name, birth year, age at marriage, spouse's age at marriage and name, for all presidents who
married when they were less than 20 years old, or who married a spouse less than 18 years of age.

Order by age of president at marriage.

SELECT

FROM

WHERE

SPOUSE_NAME
PRESIDENT, PRES_MARRIAGE

AND

ORDER BY PR_AGE

Result:

PRESIDENT.PRES_NAME , BIRTH_YR , PR_AGE , SP_AGE,

PRESIDENT.PRES_NAME = PRES_MARRIAGE.PRES_NAME
(PR_AGE < 20 OR SP_AGE < 18)

PRES NAME | BIRTH_YR | PR_AGE | SP_AGE | SPOUSE_NAME
Johnson A 1808 18 16 McCardle E
Monroe J 1758 27 17 Kortright E

NIII / Radboud University of Nijmegen (the Netherlands)

38

Reader on SQL (Structured Query Language)

The powerful join operator can be used in connection with other SQL features, like the group-by
operator, built-in (aggregate) functions or other calculations.

9.1.8 Question
For each president with more than three children, list their name, their birth year and the number of
children from all marriages. Order by number of children in descending order, and then by name.

To formulate that query, we use a built-in function to retrieve the total number of each president's
children, as six of the 39 presidents married more than once. We have to use the grouping feature to
summarise by president name.

As each president has only one birth year we are able to apply a built-in function which will enable the
grouping criteria to be met. Our choice is either MIN or MAX, either will suffice. In our query we
have selected MIN.

SELECT PRESIDENT.PRES_NAME , MIN (BIRTH_YR), SUM (NR_CHILDREN)
FROM PRESIDENT, PRES_MARRIAGE

WHERE PRESIDENT.PRES_NAME = PRES_MARRIAGE.PRES_NAME
GROUP BY PRESIDENT.PRES_NAME

HAVING SUM (NR_CHILDREN) >3

ORDER BY 3 DESC, 1

Note:
In the ORDER BY clause, one can use the column name or the position of the column in the SELECT
list counting from left to right. In the case of a function, one has to use the position.

Result:
PRES NAME | MIN | SUM
Tyler J 1790 15
Harrison W H 1773 10
Hayes R B 1822 8
Garfield J A 1831 7
Jefferson T 1743 6
Roosevelt F D | 1882 6
Roosevelt T 1858 6
Taylor Z 1784 6
Adams J 1735 5
Cleveland G 1837 5
Johnson A 1808 5
Adams J Q 1767 4
Carter J E 1924 4
Ford GR 1913 4
GrantU S 1822 4
Lincoln A 1809 4
Reagan R 1911 4
Van Buren M 1782 4
Addition:

9.2 Joinwith GROUP BY in case of N : M -relations between tables

If we are grouping the results of a join of several tables, we have to watch very meticulously how the
process of grouping evolves exactly.

Especially when joining tables where the join condition is valid for a number of records of both tables
(shortly: in case of n:m-relations between those tables).

Example:

NIII / Radboud University of Nijmegen (the Netherlands) 39

Reader on SQL (Structured Query Language)

Show the married presidents who have more than 3 hobbies and show in the same view for each
president as well the number of marriages as the number of hobbies, ordered by decreasing number of

hobbies.

The next, ‘raw defined’ query (formulated without analyzing in detail) looks very ‘natural’:

SELECT
FROM
WHERE

GROUP BY

HAVING

M.Pres_Name, COUNT (Spouse_name), COUNT (Hobby)
Pres_marriage M, Pres_hobby H
M.Pres_name = H.Pres_name
M.Pres_name

COUNT (Hobby) >3

{incorrect ! }

ORDER BY 3 DESC

with the (incorrect !) result:

PRES_NAME COUNT | COUNT
Roosevelt T 14 14
Wilson W 6 6
Eisenhower D D 5 5
Coolidge C 5 5

As you can see a somewhat strange and definitely not meant result.

To discover what has gone wrong *, we formulate a join query of which the result still not has been
grouped, but where we have put as much as possible the same conditions to the result:

SELECT

FROM

WHERE
AND

M.Pres_name, Spouse_name, Hobby

Pres_marriage M, Pres_hobby H

M.Pres_name = H.Pres_name

M.Pres_name IN (SELECT Pres_name
FROM Pres_Hobby
GROUP BY Pres_name
HAVING COUNT (*)>3)

The result of this test query is:

PRES_NAME SPOUSE_NAME | HOBBY
Roosevelt T Lee AH Boxing
Roosevelt T Lee AH Hunting
Roosevelt T Lee AH Jujitsu
Roosevelt T Lee AH Riding
Roosevelt T Lee AH Shooting
Roosevelt T Lee AH Tennis
Roosevelt T Lee AH Wrestling
Roosevelt T Carow E K Boxing
Roosevelt T Carow E K Hunting
Roosevelt T Carow E K Jujitsu
Roosevelt T Carow E K Riding
Roosevelt T Carow E K Shooting
Roosevelt T Carow E K Tennis
Roosevelt T Carow E K Wrestling
Coolidge C Goodhue G A Fishing
Coolidge C Goodhue G A Golf
Coolidge C Goodhue G A Indian Clubs
Coolidge C Goodhue G A Mechanical Horse
Coolidge C Goodhue G A Pitching Hay
Eisenhower DD | Doud G Bridge
Eisenhower D D | Doud G Golf
Eisenhower DD | Doud G Hunting
Eisenhower DD | Doud G Painting

? Formulating such a test query to make manifest the intermediate results, is anyhow a good strategy to test if a
worked out query indeed gives the desired, correct result; see this as ‘debugging in SQL’.

NIII / Radboud University of Nijmegen (the Netherlands) 40

Reader on SQL (Structured Query Language)

| Eisenhower D D | Doud G | Fishing |

In this view we can see, that for president Roosevelt all 7 hobbies are combined with each of his two
spouses successively.

This is a difficulty that can arise if as well in the first (Marriage-) table as in the other (Hobby-) table
several records can appear for a single president and we thus touch on an n:m-relation. How do we
get the desired, correct result (so for each president the number of his marriages and his hobbies)?

In this case, the most obvious way to get a correct result, is not to count the number of rows, but to
count the number of distinct president marriages (via e.g. their different Spouse name) as well as their
distinct hobbies (through there hobby-name).

This most obvious way conducts us to the following query:

SELECT M.Pres_Name, COUNT (DISTINCT Spouse_name) ,
COUNT (DISTINCT Hobby)

FROM Pres_marriage M, Pres_hobby H

WHERE M.Pres_name = H.Pres_name

GROUP BY M.Pres_name

HAVING COUNT (DISTINCT Hobby) >3

ORDER BY 3 DESC

With the expected correct result:

PRES_NAME COUNT | COUNT
Roosevelt T 2 7
Eisenhower D D 1 5
Coolidge C 1 5

NIII / Radboud University of Nijmegen (the Netherlands) 41

Reader on SQL (Structured Query Language)

10 Subqueries

The subquery is a particularly powerful SQL concept. It permits an SQL user to phrase in one query a
complicated question which would otherwise have required more than one query. A subquery is
simply a way of using the results of one select command inside another, without having to substitute
the results by hand.

Let us first look at an example to introduce the concept.

10.1.1 Question
List all the facts of those presidential marriages which resulted in a number of children that is greater
than the average number of children per presidential marriage.

With the SQL concepts so far described, we need to formulate two queries:
1. List the average number of children per presidential marriage.
The resultis 3.25.
2. List all facts about those marriages which have more than 3.25 children.

The first query in SQL is:

SELECT AVG (NR_CHILDREN)
FROM PRES_MARRIAGE

This query results in a single number, 3.25, which can then be used in the second part:

SELECT *
FROM PRES_MARRIAGE
WHERE NR_CHILDREN > 3.25

With a subquery, this can be done in one step:

SELECT *

FROM PRES_MARRIAGE

WHERE NR_CHILDREN > (SELECT AVG (NR_CHILDREN)

FROM PRES MARRIAGE)
Result:

PRES_NAME | SPOUSE_NAME | PR_AGE | SP_AGE | NR_CHILDREN | MAR_YEAR
Adams J Smith A 28 19 5 1764
Jefferson T Skelton MW 28 23 6 1772
Adams J Q Johnson L C 30 22 4 1797
Van Buren M Hoes H 24 23 4 1807
Harrison WH | Symmes AT 22 20 10 1795
Tyler J Christian L 23 22 8 1813
Tyler J Gardiner J 54 24 7 1844
Taylor Z Smith M M 25 21 6 1810
Lincoln A Todd M 33 23 4 1842
Johnson A McCardle E 18 16 5 1827
GrantU S Dent J B 26 22 4 1848
Hayes RB Webb L W 30 21 8 1852
Garfield J A Rudolph L 26 26 7 1858
Cleveland G Folson F 49 21 5 1886
Roosevelt T Carow E K 28 25 5 1886
Roosevelt F D | Roosevelt A E 23 20 6 1905
Ford GR Warren E B 35 30 4 1948
Carter J E Smith R 21 18 4 1946

NIII / Radboud University of Nijmegen (the Netherlands) 42

Reader on SQL (Structured Query Language)

This subquery must be enclosed in parentheses. The query in which the subquery is embedded is
called the main-query or outer-level query.

A subquery has basically the same format as the main query, with a few restrictions:
e A subquery may only have a single column name or expression in its SELECT clause.
e A subquery may not have an ORDER BY clause.
e The result of a subquery must be of a type compatible with the other operand of the
comparison.

A subquery in SQL can be used anywhere that a constant is allowed. This means that the contents of
one table can be used freely in selecting from or updating other tables.

10.1.2 Question
Show the name and age of the president who died the youngest.

SELECT PRES_NAME, DEATH_AGE
FROM PRESIDENT

WHERE DEATH_AGE = (SELECT MIN (DEATH_AGE)
FROM PRESIDENT)

(Compare with ‘Example 2 Question’ in the chapter about aggregate-functions)

Result: (Depending on the system used, there can be a warning message like: NULL IGNORED)

PRES_NAME | DEATH_AGE
Kennedy J F 46

If a subquery returns more than one value, we cannot use the ordinary comparison operators, as in the
case of ordinary conditions. The next example introduces comparison operators between a value and
a set of values.

10.1.3 Question
List the hobbies and names of all those presidents who served 8 years or longer. Order by hobbies and
presidents name.

The subquery necessary in this case is:
SELECT PRES_NAME
FROM PRESIDENT
WHERE YRS_SERV >= 8

The result of this subquery is the following set of president names:

PRES_NAME
Jefferson T
Madison J
Monroe J
Jackson A
GrantU S
Cleveland G
Wilson W
Roosevelt F D
Eisenhower D D

NIII / Radboud University of Nijmegen (the Netherlands) 43

Reader on SQL (Structured Query Language)

We now have to select the hobbies of these presidents, using PRES NAME from the PRES HOBBY
table. For this comparison we may use the IN (or = ANY) operator within the main query:

SELECT HOBBY , PRES_NAME
FROM PRES_HOBBY
WHERE PRES NAME IN (SELECT PRES_NAME
FROM PRESIDENT
WHERE YRS _SERV>=8)
ORDER BY HOBBY, PRES_NAME
Result:
HOBBY PRES_NAME
Bridge Eisenhower D D
Fishing Cleveland G
Fishing Eisenhower D D
Fishing Jefferson T
Fishing Roosevelt F D
Golf Eisenhower D D
Golf Wilson W
Hunting Eisenhower D D
Painting Eisenhower D D
Riding Jackson A
Riding Jefferson T
Riding Wilson W
Sailing Roosevelt F D
Swimming | Roosevelt F D
Walking Wilson W

Another solution using the ANY modifier is as follows:

SELECT

FROM

WHERE

ORDER BY

HOBBY, PRES_NAME

PRES_HOBBY

PRES_NAME = ANY (SELECT PRES_NAME
FROM PRESIDENT
WHERE YRS_SERV >= 8)

HOBBY, PRES_NAME

Still another solution, using a join instead of a subquery is:

SELECT

FROM

WHERE
AND
ORDER BY

10.1.4 Question

HOBBY, PRESIDENT.PRES_NAME

PRESIDENT , PRES_HOBBY

PRESIDENT.PRES_NAME = PRES_HOBBY.PRES_NAME
YRS_SERV >= 8

HOBBY, PRESIDENT.PRES_NAME

Which presidents never won an election?

A president who never won an election is one who is recorded in the PRESIDENT table but is not in
the list of election winners in the ELECTION table.

To solve this problem we first make a list of all the winners of elections using the following subquery:

SELECT

FROM

WHERE

DISTINCT CANDIDATE
ELECTION
WINNER_LOSER_INDIC ='W'

NIII / Radboud University of Nijmegen (the Netherlands) 44

Reader on SQL (Structured Query Language)

The result of this subquery is a list of all election winners.

We must now compare these election winning presidents against the PRESIDENT table. We may use
either the *.. NOT = ALL ..” orthe NOT IN operators within the main query (they are actually the
same operator).

SELECT PRES_NAME
FROM PRESIDENT
WHERE PRES_NAME NOT IN (SELECT CANDIDATE
FROM ELECTION
WHERE WINNER_LOSER_INDIC ='W")

Result:

PRES_NAME
Tyler J
Fillmore M
Johnson A
Arthur C A
Ford GR

10.1.5 Question

List the hobbies of presidents who served for
(a) 12 years or more,
(b) 8 years or more.

The subqueries for cases (a) and (b) are as follows:
SELECT PRES_NAME
FROM PRESIDENT

WHERE YRS_SERV>=12 (a)
WHERE YRS_SERV > =8 (b)

Result: (a)

PRES_NAME
Roosevelt F D

Result: (b)

PRES_NAME
Jefferson T
Madison J
Monroe J
Jackson A
GrantU S
Cleveland G
Wilson W
Roosevelt F D
Eisenhower D D

SELECT HOBBY
FROM PRES_HOBBY

WHERE PRES_NAME = (SELECT PRES_NAME
FROM PRESIDENT
WHERE YRS_SERV>=12)
Result:

HOBBY

Fishing

Sailing

Swimming

NIII / Radboud University of Nijmegen (the Netherlands) 45

Reader on SQL (Structured Query Language)

In case (a), the subquery returns one value, that is Roosevelt F D. Thus, the main query will return the
hobbies of President Roosevelt F D.

In case (b) however, the subquery returns several values (a set of values): more than one president
served 8 years or longer. Thus the main query returns an error indication.

It is, however, quite meaningful to have queries with subqueries which return more than one value. In
order to avoid an error indication, we have to use a set comparison operator. A set comparison
operator is an ordinary comparison operator, qualified by ANY or ALL:

comparison-operator { ANY | ALL }
e.g:. >ANY, =ALL, ..

The qualification by ANY means that the condition is true if at least one value in the set of values
specified by the subquery fulfills the comparison.

The qualification by ALL means that the condition is true if all values in the set of values specified by
the subquery fulfill the comparison.

Examples:

Roosevelt F D = ANY (Jefferson T, Madison J, Monroe J, Jackson A, Grant U S, Wilson W,
Roosevelt F D, Eisenhower D D)
=> TRUE, since Roosevelt F D is contained in the set.
Note:
The operator = ANY can be written also as IN, and should be read 'is contained in'.

Ford GR “=ALL (Reagan R, Carter J E, Nixon R M, Johnson L B, Kennedy J F)
=> TRUE, since Ford G R is not contained in the set
Note:
The operator = ALL can be written also as NOT IN and should be read 'is not contained in'.

A =ALL (A/B,C)

=> FALSE, since A is not equal to some elements of the set, in this case B or C.
Note:
Such an expression can never be true, unless the set contains only one element.

A *=ANY (A,B,C)

=> TRUE, since A is not equal to some elements of the set, in this case B or C.
Note:
Such an expression is always true, unless the set contains only one element.

Observation: the here used operator “*=" (with meaning ‘not equal to’) is not supported by all systems and is
mostly replaced by ‘<>’ (without blank between ‘<’ and “>’) or by ‘NOT ... =...or ‘NOT ... IN ...”.

3 <ANY (1,2,3,4)
=> TRUE, since there is one element in the set which is greater than 3, that is 4.

3 <ALL(1,2,3,4)
=> FALSE, since there are elements in the set which are less than 3, that is 1, 2.

3 >ALL(1,2)
=> TRUE, since all elements in the set are less than 3.

NIII / Radboud University of Nijmegen (the Netherlands) 46

Reader on SQL (Structured Query Language)

10.2 Extreme (maximum / minimum) values (>=ALL, <=ALL, ...)
Another kind of a frequently occurring query is the following one:

10.2.1 Question
Which state provided the largest number of presidents, and what is that number?

SELECT STATE_BORN , COUNT (*)

FROM PRESIDENT
GROUPBY STATE_BORN —
HAVING COUNT (*) >= ALL (SELECT COUNT (*) {W ere the number
FROM PRESIDENT is greater or.equal to
GROUP BY STATE_BORN) | @/l numbers in the
following list}

The qualification ALL means that the condition is true if ALL values in the set of values specified by
the subquery satisfy the comparison. In this case only the maximum count satisfies all, hence that is
the only group which is retained in the main query.

Result:

STATE_BORN | COUNT (*)
Virginia 8

Note:

If we are sure that the subquery is going to return only one value, we can use an ordinary comparison
operator. However, if the subquery will then return more than one value, the main query will give an
error indication.

10.2.2 Question
Find those states which entered the union before President Washington was inaugurated.

The subquery that finds in which year Washington was inaugurated is as follows:
SELECT YEAR_INAUGURATED

FROM ADMINISTRATION
WHERE PRES_NAME = 'Washington G'

We find that this query returns two values:

YEAR_INAUGURATED
1789
1793

Thus our query was not clear. Do we mean those states which entered the union before President
Washington was inaugurated first (a), or last (b)?

The situation is clarified by using the set comparison operators < ALL or < ANY, respectively:

10.2.3 Question (a)
SELECT STATE_NAME
FROM STATE
WHERE YEAR_ENTERED < ALL (SELECT YEAR_INAUGURATED
FROM ADMINISTRATION
WHERE PRES_NAME = 'Washington G')

Result:

NIII / Radboud University of Nijmegen (the Netherlands) 47

Reader on SQL (Structured Query Language)

STATE_NAME
Massachusetts
Pennsylvania
Virginia
Connecticut
South Carolina
Maryland

New Jersey
Georgia

New Hampshire
Delaware

New York
North Carolina
Rhode Island

10.2.4 Question (b)
SELECT STATE_NAME
FROM STATE
WHERE YEAR_ENTERED < ANY (SELECT YEAR_INAUGURATED
FROM ADMINISTRATION
WHERE PRES_NAME = 'Washington G')
Result:

STATE_NAME
Massachusetts
Pennsylvania
Virginia
Connecticut
South Carolina
Maryland

New Jersey
Georgia

New Hampshire
Delaware

New York
North Carolina
Rhode Island
Vermont
Kentucky

It is possible that a subquery may contain in its WHERE clause or HAVING clause another subquery,
a sub-subquery, so to speak (a nesting of subqueries).

10.2.5 Question
List all the facts available in the table PRESIDENT about presidents who were inaugurated after
Hawaii entered the union.
SELECT *
FROM PRESIDENT
WHERE PRES_NAME = ANY (SELECT PRES_NAME
FROM ADMINISTRATION
WHERE YEAR_INAUGURATED >
(SELECT YEAR_ENTERED
FROM STATE
WHERE STATE_NAME = 'Hawaii'))
Note:
Since the sub-subquery (the second subquery) returns only one value, the comparison operator > does
not need to be qualified with ANY or ALL.
The first subquery however may return several values, thus the comparison operator = needs to be
qualified, in this case with ANY.

NIII / Radboud University of Nijmegen (the Netherlands) 48

Reader on SQL (Structured Query Language)

Result:

This question may also be expressed with a JOIN and without a subquery as follows:

PRES_NAME | BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Carter J E 1924 4 ? Democratic | Georgia

Ford GR 1913 2 ? Republican | Nebraska
Johnson L B 1908 5 65 Democratic | Texas
Kennedy J F 1917 2 46 Democratic | Massachusetts
Nixon R M 1913 5 ? Republican | California
Reagan R 1911 3 ? Republican | lllinois

SELECT DISTINCT PRESIDENT.PRES_NAME , BIRTH_YR , YRS_SERYV,
DEATH_AGE, PARTY, STATE_BORN
FROM PRESIDENT, ADMINISTRATION, STATE
WHERE PRESIDENT.PRES_NAME = ADMINISTRATION.PRES_NAME
AND YEAR_INAUGURATED > YEAR_ENTERED
AND STATE_NAME = 'Hawaii'

A subquery may contain a GROUP BY or HAVING clause. In this case, the operator used in
connection with the subquery should be a set comparison operator.

10.2.6 Question

List the names and ages at death of those presidents w ho were married more than once.

Order by name.

The subquery for finding out who was married more than once is:

SELECT PRES_NAME
FROM PRES_MARRIAGE
GROUP BY PRES_NAME
HAVING COUNT (*) > 1

The result of this subquery is:
PRES NAME
Fillmore M
Harrison B
Reagan R
Roosevelt T
Tyler J

Wilson W

The main query then is:

SELECT PRES_NAME, DEATH_AGE
FROM PRESIDENT
WHERE PRES NAME IN (SELECT
FROM
GROUP BY
HAVING
ORDER BY PRES NAME
Result:
PRES_NAME | DEATH_AGE
Fillmore M 74
Harrison B 67
Reagan R ?
Roosevelt T 60
Tyler J 71
Wilson W 67

NIII / Radboud University of Nijmegen (the Netherlands) 49

PRES_NAME

PRES_MARRIAGE

PRES_NAME
COUNT (%) > 1)

Reader on SQL (Structured Query Language)

Many times a subquery may also be used in cases where the JOIN could be used.

10.2.7 Question
Find those states which entered the union the same year as President Eisenhower was born. Order by
state name.

With the JOIN we get the following SQL command:

SELECT STATE_NAME

FROM STATE, PRESIDENT

WHERE YEAR_ENTERED =BIRTH_YR
AND PRES_NAME = 'Eisenhower D D'

ORDER BY STATE_NAME

Result:

STATE_NAME
Idaho
Wyoming

This request can also be expressed in SQL with the subquery construct. To find the states which
qualify, we have to apply a condition which we can only evaluate by investigating the table
PRESIDENT. The subquery is:

SELECT BIRTH_YR
FROM PRESIDENT
WHERE PRES_NAME = 'Eisenhower D D'

Result:

BIRTH_YR
1890

Since every president has exactly one birth year, this query will always return one value, in our
example 1890.

This value will be used by the main query which is:
SELECT STATE_NAME
FROM STATE
WHERE YEAR_ENTERED = (SELECT BIRTH_YR
FROM PRESIDENT
WHERE PRES_NAME = 'Eisenhower D D)
ORDER BY STATE_NAME

Result:

STATE_NAME
Idaho
Wyoming

NIII / Radboud University of Nijmegen (the Netherlands) 50

Reader on SQL (Structured Query Language)

Addition: Remark II on 'NULL'-values
An initially unexpected effect occurs again with 'NULL'-values. So the query:

SELECT *

FROM ADMINISTRATION

WHERE (ADMIN_NR+30) IN (SELECT DEATH_AGE
FROM PRESIDENT)

results in 26 rows, whereas the at first sight complementary query:

SELECT *

FROM ADMINISTRATION

WHERE (ADMIN_NR+30) NOT IN (SELECT DEATH_AGE
FROM PRESIDENT)

does not give any result row. The test if a value is not in some column that (partly) may have an
‘unknown’ value, does not lead to a 'true', but always to an 'unknown' and therefore no single row will
be shown!

However: the different RDBMS’s do not apply this above-mentioned reasoning in a correct way.

Therefore you always must thoroughly test especially those queries that in some or another way use
(or can use) NULL-values in their conditions.

NIII / Radboud University of Nijmegen (the Netherlands) 51

Reader on SQL (Structured Query Language)

11 Use of More Than One Copy of a Table

In SQL it is possible to refer to a table by more than one name, and then assume that there are as many
copies of the tables as there are names. There are several ways of using this feature.

We will first illustrate the use of more than one table copy for the same table with an example that can
also be solved without this feature.

11.1.1 Question
For each president who was born in a year in which at least one other president was born, list his name

and birth year.

One way to express this in SQL is:

Question a
SELECT PRES_NAME, BIRTH_YR
FROM PRESIDENT

WHERE BIRTH_YR IN (SELECT BIRTH_YR
FROM PRESIDENT
GROUP BY BIRTH_YR
HAVING ~ COUNT (*)>1)

(instead of IN one may use = ANY)

Result a:
PRES_NAME | BIRTH_YR
Adams J Q 1767
Jackson A 1767
GrantU S 1822
Hayes RB 1822
Nixon R M 1913
Ford GR 1913

One may also solve this problem by having two tables, say T1 and T2, which are both copies of the
table PRESIDENT.

New copies of a table are declared in the FROM clause by placing the new name after the old name
(separated by a blank).

For example, to introduce two new names T1 and T2 for the table PRESIDENT, our FROM clause
should state:

FROM PRESIDENT T1, PRESIDENT T2

With the availability of two PRESIDENT tables we can compare a birth year of a given row in one
table with a birth year of a row in the second table.
We can now write:

Question b
SELECT T1.PRES_NAME, T1.BIRTH_YR, T2.PRES_NAME , T2.BIRTH_YR
FROM PRESIDENT T1, PRESIDENT T2
WHERE T1.BIRTH_YR = T2.BIRTH_YR
Result b:
PRES_NAME BIRTH_YR | PRES_NAME BIRTH_YR
Washington G 1732 Washington G 1732
Adams J 1735 Adams J 1735
Jefferson T 1743 Jefferson T 1743
Madison J 1751 Madison J 1751

NIII / Radboud University of Nijmegen (the Netherlands) 52

Reader on SQL (Structured Query Language)

Monroe J 1758 Monroe J 1758
Adams J Q 1767 Adams J Q 1767
Jackson A 1767 Adams J Q 1767
Adams J Q 1767 Jackson A 1767
Jackson A 1767 Jackson A 1767
Harrison W H 1773 Harrison W H 1773
Van Buren M 1782 Van Buren M 1782
Taylor Z 1784 Taylor Z 1784
Tyler J 1790 Tyler J 1790
Buchanan J 1791 Buchanan J 1791
Polk J K 1795 Polk J K 1795
Fillmore M 1800 Fillmore M 1800
Pierce F 1804 Pierce F 1804
Johnson A 1808 Johnson A 1808
Lincoln A 1809 Lincoln A 1809
GrantU S 1822 GrantU S 1822
Hayes R B 1822 GrantU S 1822
GrantU S 1822 Hayes R B 1822
Hayes RB 1822 Hayes R B 1822
Arthur C A 1830 Arthur C A 1830
Garfield J A 1831 Garfield J A 1831
Harrison B 1833 Harrison B 1833
Cleveland G 1837 Cleveland G 1837
McKinley W 1843 McKinley W 1843
Wilson W 1856 Wilson W 1856
Taft WH 1857 Taft W H 1857
Roosevelt T 1858 Roosevelt T 1858
Harding W G 1865 Harding W G 1865
Coolidge C 1872 Coolidge C 1872
Hoover H C 1874 Hoover H C 1874
Roosevelt F D 1882 Roosevelt F D 1882
Truman H S 1884 TrumanH S 1884
Eisenhower D D 1890 Eisenhower D D 1890
Johnson L B 1908 Johnson L B 1908
Reagan R 1911 Reagan R 1911
Ford GR 1913 Ford GR 1913
Nixon R M 1913 Ford GR 1913
Ford GR 1913 Nixon R M 1913
Nixon R M 1913 Nixon R M 1913
Kennedy J F 1917 Kennedy J F 1917
Carter J E 1924 Carter J E 1924

If we compare the result with the one of ‘question a’ we see that there are quite a few more rows in the
result in ‘question b’. This is essentially redundant or irrelevant information, caused by the simple fact
that each president was born in the same year as himself and the doubling of each pair of presidents
that fulfill the condition.

To avoid this kind of redundancy and irrelevancy we use the following SQL query:

Question ¢

List presidents born on same year. List each president only once.

We can eliminate unwanted rows by making sure that the match is between different presidents, and
that this is the first time that this match has been found.

SELECT T1.PRES_NAME, TI.BIRTH_YR , T2.PRES_NAME , T2.BIRTH_YR

FROM

PRESIDENT T1, PRESIDENT T2

WHERE T1.BIRTH_YR = T2.BIRTH_YR

Note:

AND T1.PRES_NAME < T2.PRES_NAME

NIII / Radboud University of Nijmegen (the Netherlands) 53

Reader on SQL (Structured Query Language)

The last condition in the WHERE clause makes sure firstly that a president is not matched with
himself, and secondly that a pair of presidents satisfying the equality condition is listed only once.

Result:
PRES_NAME | BIRTH_YR | PRES_NAME | BIRTH_YR
Adams J Q 1767 Jackson A 1767
GrantU S 1822 Hayes RB 1822
Ford GR 1913 Nixon R M 1913

Another useful application of having more than one table copy is the following:

11.1.2 Question

Using the table ELECTION for all elections after 1900, create a new table with the columns
ELECTION YEAR, WINNER, WINNER VOTES, LOSERS, LOSERS VOTES.

To solve this task, we create two table labels W (winners) and L (losers) for the table ELECTION. We
use SQL to distribute the rows of the ELECTION table over two new tables so the ELECTION W
contains the rows with WINNER LOSER_INDIC ='W', and ELECTION L the rows with

WINNER LOSER INDIC='L'. These two new tables are joined as follows:

SELECT W.ELECTION_YEAR, W.CANDIDATE, W.VOTES, L.CANDIDATE, L.VOTES
FROM ELECTION W, ELECTION L
WHERE W.ELECTION_YEAR = L.ELECTION_YEAR
AND W.ELECTION_YEAR > 1900
AND W.WINNER_LOSER_INDIC = 'W'
AND L.WINNER_LOSER_INDIC = 'L
ORDER BY W.ELECTION_YEAR, L.VOTES DESC

Result:

ELECTION_YEAR | CANDIDATE VOTES | CANDIDATE VOTES
1904 Roosevelt T 336 Parker A B 140
1908 Taft WH 321 Bryan W J 162
1912 Wilson W 435 Roosevelt T 88
1912 Wilson W 435 Taft WH 8
1916 Wilson W 277 Hughes C E 254
1920 Harding W G 404 Cox WW 127
1924 Coolidge C 382 Davis J W 136
1924 Coolidge C 382 La Follette RM 13
1928 Hoover H C 444 Smith AE 87
1932 Roosevelt F D 472 Hoover H C 59
1936 Roosevelt F D 523 Landon A M 8
1940 Roosevelt F D 449 Wilkie W L 82
1944 Roosevelt F D 432 Dewey T E 99
1948 TrumanH S 303 Dewey TE 189
1948 Truman HS 303 Thurmond J S 39
1952 Eisenhower D D 442 Stevenson A 89
1956 Eisenhower D D 457 Stevenson A 73
1956 Eisenhower D D 457 Jones W B 1
1960 Kennedy J F 303 Nixon R M 219
1960 Kennedy J F 303 Byrd 15
1964 Johnson L B 486 Goldwater B 52
1968 Nixon R M 301 Humphrey H H 191
1968 Nixon R M 301 Wallace G C 46
1972 Nixon R M 520 McGovern G S 17
1972 Nixon R M 520 Hospers J 1
1976 Carter JE 297 Ford GR 240
1980 Reagan R 489 Carter J 49

NIII / Radboud University of Nijmegen (the Netherlands) 54

Reader on SQL (Structured Query Language)

To illustrate the use of table labels we will introduce another example often published in the literature
on relational databases.

11.1.3 Question
Which employee earns more than his manager?
With this query it is assumed that the following template exists (ENR is employee number).

EMPLOYEE TABLE:

[ENR | NAME | MGR | SALARY |

Let us introduce a small sample database:

EMPLOYEE
ENR | NAME MGR | SALARY
1 303 | JOHNSON - 95000
2 176 | EDWARDS | 303 | 65000
3 142 | FRASER 303 | 70000
4 267 | DIXON 303 | 42000
5 107 | FRASER 176 | 42000
6 101 | KELLY 176 | 55000
7 157 | BAXTER 176 | 62000
8 147 | BROWN 142 33000
9 144 | KENT 142 | 63000
10 219 | GREEN 101 37000
11 221 | CODD 101 60000
12 297 | SMITH 101 30000
13 387 | WHITE 101 85000

How would we solve this problem without a computer?

We would go to the first row, look up the employee number of the manager of the employee of row 1,
and because employee 303 has no manager we are finished with this row.

Next we go to row 2, which contains three facts about employee 176. We look in the third column and
find that the manager of employee 176 is employee 303. We now take the salary of 176 which is
65000 and compare this with the salary of employee 303 (which is 95000). What we are doing is
essentially making comparisons between values in two different rows. The WHERE clause of SQL
does not permit comparisons between different rows in the same table.

Let us now suppose we had two tables, which are identical, one called EMPLOYEE and the other
called MANAGER. We can now proceed as follows:

We go to row 2 in the table employee, find the employee number of the manager of this employee
(176) in column 3 which is 303. We now go to the MANAGER table and look up the salary of
employee 303 and compare this with the salary of 176.

This procedure is repeated for all rows in the table EMPLOYEE.

The reader may have already concluded that this will require a join and a comparison in SQL. The
SQL query is:

SELECT EMPLOYEE.ENR
FROM EMPLOYEE, MANAGER
WHERE EMPLOYEE.MGR = MANAGER.ENR
AND EMPLOYEE.SALARY > MANAGER.SALARY

Since there is no MANAGER table, but rather all managers are employees that manage other
employees, we would actually have the following select:

NIII / Radboud University of Nijmegen (the Netherlands) 55

Reader on SQL (Structured Query Language)

SELECT EMPLOYEE.ENR
FROM EMPLOYEE, EMPLOYEE MANAGER
WHERE EMPLOYEE.ENR = MANAGER.ENR

AND EMPLOYEE.SALARY > MANAGER.SALARY

Note that we have actually given the EMPLOYEE table two names: EMPLOYEE and MANAGER.
We could also choose to use table labels on both tables, as in the following query:

SELECT E.ENR
FROM EMPLOYEE E, EMPLOYEE M
WHERE E.MGR = M.ENR

AND E.SALARY > M.SALARY

Result:

ENR
387
221

NIII / Radboud University of Nijmegen (the Netherlands) 56

Reader on SQL (Structured Query Language)

12 Correlated Subqueries

In the previous subquery cases, we were able to obtain the result of a subquery independently (without
referring to anything outside the subquery) and in particular without referring to the main query. There
are however, queries where we cannot obtain the result of the subquery without referring to rows in
the main query. A subquery which has a search condition which relates to the main query is called a
correlated subquery.

Let us first look at an example that can be expressed in several ways in SQL.

12.1.1 Question
List the name and birth year of those presidents who were inaugurated at least once within 45 years of
their birth year.

We deal in this case with two tables, PRESIDENT and ADMINISTRATION. Without the aid of a
computer we, would probably have to take the two tables, both sorted by president name, and retain
from the PRESIDENT table only two columns, namely PRES NAME and BIRTH_YR and from the
ADMINISTRATION table the columns PRES NAME and YEAR INAUGURATED for the first
inauguration of each president.

These two tables are presented in the next figures.

PRES NAME BIRTH_YR PRES_NAME MIN (YEAR_INAUGURATED)
Adams J 1735 Adams J 1797
Adams J Q 1767 Adams J Q 1825
Arthur C A 1830 Arthur C A 1881
Buchanan J 1791 Buchanan J 1857
Carter J E 1924 Carter J E 1977
Cleveland G 1837 Cleveland G 1885
Coolidge C 1872 Coolidge C 1923
Eisenhower D D | 1890 Eisenhower D D 1953
Fillmore M 1800 Fillmore M 1850
Ford GR 1913 Ford GR 1974
Garfield J A 1831 Garfield J A 1881
GrantU S 1822 GrantU S 1869
Harding W G 1865 Harding W G 1921
Harrison B 1833 Harrison B 1889
Harrison W H 1773 Harrison W H 1841
Hayes R B 1822 Hayes R B 1877
Hoover H C 1874 Hoover H C 1929
Jackson A 1767 Jackson A 1829
Jefferson T 1743 Jefferson T 1801
Johnson A 1808 Johnson A 1865
Johnson L B 1908 Johnson L B 1963
Kennedy J F 1917 Kennedy J F 1961
Lincoln A 1809 Lincoln A 1861
Madison J 1751 Madison J 1809
McKinley W 1843 McKinley W 1897
Monroe J 1758 Monroe J 1817
Nixon R M 1913 Nixon R M 1969
Pierce F 1804 Pierce F 1853
Polk J K 1795 Polk J K 1845
Reagan R 1911 Reagan R 1981
Roosevelt F D 1882 Roosevelt F D 1933
Roosevelt T 1858 Roosevelt T 1901
Taft WH 1857 Taft WH 1909
Taylor Z 1784 Taylor Z 1849
Truman H S 1884 TrumanH S 1945
Tyler J 1790 Tyler J 1841
Van Buren M 1782 Van Buren M 1837
Washington G 1732 Washington G 1789
Wilson W 1856 Wilson W 1913

NIII / Radboud University of Nijmegen (the Netherlands) 57

Reader on SQL (Structured Query Language)

We would then go to the first row in the PRESIDENT table, take the birth year, go to the
ADMINISTRATION table and take the row which has the same president name, and check whether
the birth year plus 45 years is greater than the first inauguration year of that president. If this was true,
we would list the president name in the result of the query.

This process would be repeated for every row in the PRESIDENT table.

It is important to repeat that we are comparing for each specific president, the birth year with 45 added
to it with the first inauguration year of that president.

In principle, the SQL system works as shown in this example: it selects the first row in the
PRESIDENT table and then evaluates the subquery for those rows in the ADMINISTRATION table
which have the same president name as the first row in the PRESIDENT table. Then this procedure is
repeated for the next row in the PRESIDENT table and so on until all rows of the PRESIDENT table
have been dealt with.

The entire correlated query is:
(a)
SELECT PRES_NAME, BIRTH_YR
FROM PRESIDENT
WHERE BIRTH_YR + 45 > (SELECT MIN (YEAR_INAUGURATED)
FROM ADMINISTRATION
WHERE ADMINISTRATION.PRES_NAME =
PRESIDENT.PRES_NAME)

The main aspect of the query can be explained as follows:
List the president name from the PRESIDENT table under the condition that the birth year + 45 is
greater than the minimum year of inauguration of the president under consideration.

Note:

The prefix ADMINISTRATION in the last line of the given subquery is not required, because there is
a rule which specifies that with the prefix omitted, SQL assumes the table name(s) in the FROM
clause of the innermost subquery.

The last line of the subquery restricts the results of the subquery to those rows of the
ADMINISTRATION table where the president name is the same as in the current row of the
PRESIDENT table under consideration in the main query.

Result:
PRES NAME | BIRTH_YR
Kennedy J F 1917
Roosevelt T 1858

PRESIDENT in the last line of this subquery may be referred to as a correlation variable.
We may prefer to stress this correlation variable aspect by creating appropriate table labels, say P in
our example, and then writing the query as follows:

(b)
SELECT DISTINCT PRES_NAME, BIRTH_YR
FROM PRESIDENT P
WHERE BIRTH_YR +45 > (SELECT MIN (YEAR_INAUGURATED)
FROM ADMINISTRATION
WHERE PRES_NAME = P.PRES_NAME)

The result of Question (b)) is the same as for Question (a)

NIII / Radboud University of Nijmegen (the Netherlands) 58

Reader on SQL (Structured Query Language)

The same question can be formulated with a JOIN as follows:
(¢)
SELECT DISTINCT PRESIDENT.PRES_NAME, BIRTH_YR
FROM PRESIDENT, ADMINISTRATION
WHERE PRESIDENT.PRES_NAME = ADMINISTRATION.PRES_NAME
AND BIRTH_YR + 45> YEAR_INAUGURATED

In this formulation SQL first forms the product of the tables PRESIDENT and ADMINISTRATION
and then retains only those rows of the combined table which satisfy two conditions:

a. It must be about the same president

b. Year inaugurated is less than birth year plus 45.

Note that all three formulations gave the same result.

The use of the table label in the ‘query b’ was not required but permitted. However there are cases
where we need to introduce additional table labels.

An example of a query where one needs to use table labels as well as a correlated subquery is the
following:

12.1.2 Question
List the election year and winner of those elections in which the winner received more than 80% of the
votes in that election.

How would we solve this problem without a computer?

For a given election, we take the winner and the number of votes he polled. We then compute the sum
of the votes of all candidates for that election and compare whether the winner's votes are greater than
80% of the total.

Using a correlated subquery we get the following SQL formulation:

SELECT CANDIDATE, ELECTION_YEAR
FROM ELECTION E
WHERE WINNER_LOSER_INDIC ='W
AND VOTES > (SELECT 0.8 * SUM (VOTES)
FROM ELECTION
WHERE ELECTION.ELECTION_YEAR = E.ELECTION_YEAR)

The SUM function operates on all rows in the ELECTION table which have the same election year as
the election year of the row under consideration in the main query (E.ELECTION_YEAR). In this
case we need the correlation variable or table label E in order to distinguish between rows of the table
ELECTION in the main query and rows of the same table in the subquery.

Result:
CANDIDATE ELECTION_YEAR
Jefferson T 1804
Monroe J 1816
Monroe J 1820
Pierce F 1852
Lincoln A 1864
GrantU S 1872
Wilson W 1912
Hoover H C 1928
Roosevelt F D 1932
Roosevelt F D 1936
Roosevelt F D 1940
Roosevelt F D 1944
Eisenhower D D 1952
Eisenhower D D 1956
Johnson L B 1964
Nixon R M 1972

NIII / Radboud University of Nijmegen (the Netherlands) 59

Reader on SQL (Structured Query Language)

12.1.3

Reagan R

1980

Question
Select the president's name, birth year and the year of inauguration of his first administration, and

order the result in sequence of year of inauguration.

Result:

Still another frequently occurring kind of query is exemplified in the following example:

SELECT

FROM

WHERE

PRESIDENT.PRES_NAME, BIRTH_YR, YEAR_INAUGURATED

PRESIDENT, ADMINISTRATION

PRESIDENT.PRES_NAME = ADMINISTRATION.PRES_NAME

AND YEAR_INAUGURATED = (SELECT MIN (YEAR_INAUGURATED)

FROM ADMINISTRATION

WHERE ADMINISTRATION.PRES_NAME =
PRESIDENT.PRES_NAME)

ORDER BY YEAR_INAUGURATED

PRES_NAME BIRTH_YR | YEAR_INAUGURATED
Washington G 1732 1789
Adams J 1735 1797
Jefferson T 1743 1801
Madison J 1751 1809
Monroe J 1758 1817
Adams J Q 1767 1825
Jackson A 1767 1829
Van Buren M 1782 1837
Harrison W H 1773 1841
Tyler J 1790 1841
Polk J K 1795 1845
Taylor Z 1784 1849
Fillmore M 1800 1850
Pierce F 1804 1853
Buchanan J 1791 1857
Lincoln A 1809 1861
Johnson A 1808 1865
GrantU S 1822 1869
Hayes R B 1822 1877
Arthur C A 1830 1881
Garfield J A 1831 1881
Cleveland G 1837 1885
Harrison B 1833 1889
McKinley W 1843 1897
Roosevelt T 1858 1901
Taft W H 1857 1909
Wilson W 1856 1913
Harding W G 1865 1921
Coolidge C 1872 1923
Hoover H C 1874 1929
Roosevelt F D 1882 1933
Truman H S 1884 1945
Eisenhower D D 1890 1953
Kennedy J F 1917 1961
Johnson L B 1908 1963
Nixon R M 1913 1969
Ford GR 1913 1974
Carter J E 1924 1977
Reagan R 1911 1981

NIII / Radboud University of Nijmegen (the Netherlands)

60

Reader on SQL (Structured Query Language)

12.1.4 Question

For those presidents whose number of marriages equals the number of administrations they served as
president, list their name and this number.

Without SQL we could perform this as follows:

From the table ADMINISTRATION we would generate a table containing the president's name and
the number of administrations he served as president. The select we could use to do the same work is
as follows:

SELECT PRES_NAME, COUNT (*)
FROM ADMINISTRATION
GROUP BY PRES_NAME

Result (see table at the left).

From the table PRES MARRIAGE we would generate a table containing the president's name and the
number of marriages.

SELECT PRES_NAME, COUNT (*)
FROM PRES_MARRIAGE
GROUP BY PRES_NAME

Result (see table at the right):

..FROM ADMINISTRATION: ... FROM PRES_MARRIAGE:

PRES_NAME COUNT (*) PRES NAME COUNT (%)
Adams J 1 Adams J 1
Adams J Q 1 Adams J Q 1
Arthur C A 1 Arthur C A 1
Buchanan J 1

Carter J E 1 Carter J E 1
Cleveland G 2 Cleveland G 1
Coolidge C 2 Coolidge C 1
Eisenhower D D 2 Eisenhower D D 1
Fillmore M 1 Fillmore M 2
Ford GR 1 Ford GR 1
Garfield J A 1 Garfield J A 1
GrantU S 2 GrantU S 1
Harding W G 1 Harding W G 1
Harrison B 1 Harrison B 2
Harrison W H 1 Harrison W H 1
Hayes RB 1 Hayes R B 1
Hoover H C 1 Hoover H C 1
Jackson A 2 Jackson A 1
Jefferson T 2 Jefferson T 1
Johnson A 1 Johnson A 1
Johnson L B 2 Johnson L B 1
Kennedy J F 1 Kennedy J F 1
Lincoln A 2 Lincoln A 1
Madison J 2 Madison J 1
McKinley W 2 McKinley W 1
Monroe J 2 Monroe J 1
Nixon R M 2 Nixon R M 1
Pierce F 1 Pierce F 1
Polk J K 1 Polk J K 1
Reagan R 1 Reagan R 2
Roosevelt F D 4 Roosevelt F D 1
Roosevelt T 2 Roosevelt T 2
Taft W H 1 Taft WH 1
Taylor Z 1 Taylor Z 1
Truman H S 2 Truman H S 1
Tyler J 1 Tyler J 2
Van Buren M 1 Van Buren M 1
Washington G 2 Washington G 1
Wilson W 2 Wilson W 2

NIII / Raapoua UNTVersSTy o] IViJIegen (Ine INeTnerTanasy 61

Reader on SQL (Structured Query Language)

We would then take the one row from each table with the same president’s name, and compare the two
counts seeking an equal value.

The entire query in SQL is:

SELECT PRES_NAME, COUNT (*)
FROM ADMINISTRATION
GROUP BY PRES_NAME
HAVING COUNT (*) = (SELECT COUNT (*)
FROM PRES_MARRIAGE
WHERE PRES_MARRIAGE.PRES_NAME =
ADMINISTRATION.PRES_NAME)

Beware of the constructions that are used to connect on the one side the same number and on the other
side the same president name.

Note: in the preceding result tables [shown side by side] in the right-hand table ‘somewhere’ (at the place
where in the left-hand table the name ‘Buchanan’ appears) we inserted (“manually”) a blank row to show
matching president names at the same vertical level.

Some people add to the subquery:
GROUP BY PRES_NAME

This is redundant because of the fact that the subquery will automatically select those groups from the
PRES_MARRIAGE table having the same PRES NAME as the current group in the main query. That
is, the COUNT function of the subquery operates not on the whole table (PRES_ MARRIAGE), but
only on those rows of the table fulfilling the condition in the WHERE clause, that is on the
corresponding groups defined by the GROUP BY clause of the main query.

Result:

PRES_NAME | COUNT (*)
Adams J
Adams J Q
Arthur C A
Carter J E
Ford GR
Garfield J A
Harding W G
Harrison W H
Hayes RB
Hoover H C
Johnson A
Kennedy J F
Pierce F
Polk J K
Roosevelt T
Taft W H
Taylor Z

Van Buren M
Wilson W

Nlalalalpalalalalalalalalalalalalala

Please note that reversing the tables as in the following query results in the same answer.

NIII / Radboud University of Nijmegen (the Netherlands) 62

Reader on SQL (Structured Query Language)

SELECT PRES_NAME, COUNT (*)
FROM PRES_MARRIAGE
GROUP BY PRES_NAME
HAVING COUNT (*) = (SELECT COUNT (*)
FROM ADMINISTRATION
WHERE ADMINISTRATION.PRES_NAME =
PRES_MARRIAGE.PRES_NAME)

It is not necessary for the correlation to be between a main query and its direct subquery .
For example, there may be a correlation between a main query and one of its sub-subqueries.

12.1.5 Question
Find the names of those presidents born in a state which entered the union not more than 30 years
earlier than their first inauguration year.

SELECT PRES_NAME
FROM PRESIDENT X
WHERE STATE_BORN IN (SELECT STATE_NAME
FROMSTATE
WHERE YEAR_ENTERED + 30 >= ANY
(SELECT MIN (YEAR_INAUGURATED)
FROM ADMINISTRATION

WHERE PRES_NAME = X.PRES_NAME))

We look at excerpts of the tables PRESIDENT, STATE, and ADMINISTRATION involved in this
query:

Correlation
IN l +‘ 30 > ANY T
YR YR
X PRES_NAME | STATE_BORN STATE_NAME | ENTD INAUG | PRES_NAME
1 Washington G | Virginia Virginia 1776 1789 | Washington G
2 Adams J Massachusetts Massachusetts | 1776 . .
3 Jefferson T Virginia . . 1797 Adams J
4 Madison J Virginia . . 1801 Jefferson T
. . 1809 | Madison J

The condition is true for X = 1, X =2, X = 3, and not true for X =4 (and the rest of the table
PRESIDENT).

Thus, the result of the query is:

PRES_NAME
Washington G
Adams J
Jefferson T

NIII / Radboud University of Nijmegen (the Netherlands) 63

Reader on SQL (Structured Query Language)

12.1.6 Addition: correlation in case of an assimilated query in the SELECT-clause

Imagine, we want a survey from all presidents who died younger than 60 years and that we want a
ranking where the youngest deceased president gets ranking number 1, the president who died a little
older gets number 2 etcetera. Presidents with the same death-age get the same ranking number.

So:

NR | PRES_NAME | DEATH_AGE
1 Kennedy JF | 46
2 Garfield J A 49
3 Polk J K 53
4 Lincoln A 56
4 Arthur C A 56
6 Harding W G | 57
7 McKinley W 58

(There are 2 presidents with the same ranking ‘4’, as both presidents died at the same age.)

How can we produce such a survey?

It must be clear that our ranking number is some derived value. If you realize that the ranking number
of a president is de number (+ 1) of presidents who died younger than that president.

We can produce that extra ranking number by assimilating a complete (correlated) query in the
SELECT-clause of the main query (see also paragraph 6.2 of this reader):

SELECT (SELECT COUNT(*)+1 FROM president WHERE death_age < P1.death_age)
AS Nr, pres_name, death_age

FROM president P1

WHERE death_age < 60

ORDER BY 1

12.1.7 Addition: the Join / GROUP BY -problem of N:M-relaties in MS Access

In the chapter on ‘Joins’ we discussed in the last section the Join/GROUP BY- difficulty of N:M-
relations.

If we work with a RDMS-SQL-system (like MS Access) where the use of a COUNT (DISTINCT ..) —
construction is not possible, we will have to correct the results of the COUNT-’s in a much more
laborious way, by dividing them by the number of values ‘in the other table’.

So that can be (very laboriously...) as follows:

SELECT M.Pres_Name, COUNT(Spouse_name) / (SELECT COUNT (*)
FROM Pres_Hobby WHERE Pres_name = H.Pres_name),
COUNT(Hobby) / (SELECT COUNT (*) FROM Pres_Marriage
WHERE Pres_name = M.Pres_name)

FROM Pres_marriage M, Pres_hobby H

WHERE M.Pres_name = H.Pres_name

GROUP BY M.Pres_name

HAVING (COUNT(Hobby) / (SELECT COUNT(*) FROM Pres_Marriage

WHERE Pres_name = M.Pres_name)) >3
ORDER BY 3 DESC

And of course the result must be the same as earlier acquired through the COUNT-DISTINCT-variant:

PRES_NAME

Roosevelt T 2 7
Eisenhower D D 1 5
Coolidge C 1 5

Take care on the necessary ‘correlated query’-constructions!

NIII / Radboud University of Nijmegen (the Netherlands) 64

Reader on SQL (Structured Query Language)

13 Test for Existence on Subqueries (WHERE [NOT] Exists ...)

Instead of using a comparison operator with a subquery, we may also use the EXISTS or NOT
EXISTS operator within a WHERE clause.

...WHERE [NOT] EXISTS (subquery) ...

If the EXISTS operator is used, the condition in the WHERE clause is satisfied if the subquery results
in at least one row. If the NOT EXISTS operator is used, the condition is satisfied if the subquery
returns no rows.

13.1.1 Question
List the names and ages at death of all presidents who were married.

The main query is on the table PRESIDENT, while the subquery is on the table PRES_MARRIAGE.
However, it is not necessary in this case to investigate specific columns of this table. All that is needed
is to check whether a value appearing in the column PRES NAME of the table PRESIDENT does
appear in the column PRES NAME of the table PRES MARRIAGE. This can be formulated using
the EXISTS operator. It is also necessary in this case to correlate the column PRES NAME in the
table PRES MARRIAGE with the column PRES NAME in the table PRESIDENT.

SELECT PRES_NAME, DEATH_AGE
FROM PRESIDENT
WHERE EXISTS (SELECT *
FROM PRES MARRIAGE
WHERE PRES_MARRIAGE.PRES_NAME =
PRESIDENT.PRES_NAME)

Result:
PRES_NAME DEATH_AGE
Washington G 67
Adams J 90
Jefferson T 83
Madison J 85
Monroe J 73
Adams J Q 80
Jackson A 78
Van Buren M 79
Harrison W H 68
Tyler J 71
Polk J K 53
Taylor Z 65
Fillmore M 74
Pierce F 64
Lincoln A 56
Johnson A 66
GrantU S 63
Hayes RB 70
Garfield J A 49
Arthur C A 56
Cleveland G 71
Harrison B 67
McKinley W 58
Roosevelt T 60
Taft W H 72
Wilson W 67
Harding W G 57

NIII / Radboud University of Nijmegen (the Netherlands) 65

Reader on SQL (Structured Query Language)

Coolidge C 60
Hoover H C 90
Roosevelt F D 63
Truman H S 88
Eisenhower D D 79
Kennedy J F 46
Johnson L B 65
Nixon R M ?
Ford GR ?
Carter J E ?
Reagan R ?

13.1.2 Question
List the names and ages at death of all presidents who were not married.

SELECT PRES_NAME , DEATH_AGE
FROM PRESIDENT P
WHERE NOT EXISTS (SELECT *
FROM PRES_MARRIAGE M
WHERE M.PRES_NAME = P.PRES_NAME)

Note:
Please note the use of shorter table labels to save typing time.

Result:

PRES_NAME | DEATH_AGE
Buchanan J 77

13.1.3 Question
List the election year and name of the winning candidates who never became president.

SELECT ELECTION_YEAR, CANDIDATE
FROM ELECTION E
WHERE WINNER_LOSER_INDIC ="'W'
AND NOT EXISTS (SELECT *
FROM PRESIDENT
WHERE PRES_NAME = E.CANDIDATE)

Result:

Apparently none of the winners of elections has never become a president. Depending on the used system
there will be shown either nothing or a warning message that no rows satisfied the given conditions.

NIII / Radboud University of Nijmegen (the Netherlands) 66

Reader on SQL (Structured Query Language)

14 The UNION-operator (... UNION [ALL] ...)

It happens many times, that we want the results of two or more queries combined in a single survey.
To generate such combinations SQL offers a possibility with the UNION-operator. An imposed
condition for the UNION-operator is, that only results with the same datatypes can be combined.

14.1.1 Question
Show all the presidents, which had at most one child (the total number from all their marriages).

Note: we explicitly also want to see the presidents who never got married and thus (officially)
had no children at all.

A query as:

SELECT PRES_NAME

FROM PRES_MARRIAGE

GROUP BY PRES_NAME

HAVING SUM (NR_CHILDREN) <=1

only originates the names of presidents, which married officially (and got at most one child). By using
the UNION-operator we also can display the names of the presidents, which never married:

SELECT PRES_NAME

FROM PRES_MARRIAGE
GROUP BY PRES_NAME

HAVING SUM (NR_CHILDREN) <= 1

UNION
SELECT PRES_NAME
FROM PRESIDENT

WHERE PRES_NAME NOT IN (SELECT PRES_NAME FROM PRES_MARRIAGE)
ORDER BY PRES_NAME

As the result of this expansion also the name of president ‘Buchanan J°, who never married, will
appear in the final result table:

Buchanan J
Harding W G
Jackson A
Madison J
Polk J K
TrumanH S
Washington G

14.1.2 Question
Show all the Democratic presidents. In case such a president married, show also the name(s) of their
spouse(s) and the number of children that arose out of each marriage.

Note: to combine through the UNION-operator the names of the presidents, which never married,
with the names of presidents + names of spouse(s) + the number of children, we have to bear
in mind that the UNION-operator only can combine similar results (of the same data type).
Therefore we will have to append an additional string behind the name of an unmarried
president; also to combine with the column ‘NR_CHILDREN’ we will have to add either the
number ‘0’, or the typeless ‘NULL’.

Therefore the required query becomes:

NIII / Radboud University of Nijmegen (the Netherlands) 67

Reader on SQL (Structured Query Language)

SELECT P.PRES_NAME, SPOUSE_NAME, NR_CHILDREN

FROM PRESIDENT P, PRES_MARRIAGE M

WHERE P.PRES_NAME = M.PRES_NAME AND PARTY = 'Democratic'
UNION

SELECT PRES_NAME, 'has never married!, NULL

FROM PRESIDENT

WHERE PRES_NAME NOT IN (SELECT PRES_NAME FROM PRES_MARRIAGE)
AND PARTY = 'Democratic'

With the result:

| PRES_NAME | SPOUSE_NAME | NR_CHILDREN
Buchanan J has never married!

Carter JE Smith R 4
Cleveland G Folson F 5
Jackson A Robards R D 0
Johnson A McCardle E 5
Johnson L B Taylor CA 2
Kennedy J F Bouvier J L 3
Pierce F Appleton J M 3
Polk J K Childress S 0
Roosevelt FD |Roosevelt A E 6
TrumanH S Wallace E V 1
Van Buren M Hoes H 4
Wilson W Axson E L 3
Wilson W GaltEB 0

Of course a concluding ORDER BY ...-instruction will impose a required order in the result.

By default, the result of a UNION-construction does nof contain any duplicate rows. If the option
‘ALL’ is used, however, then duplicate rows (if existing...) will all be shown.

NIII / Radboud University of Nijmegen (the Netherlands) 68

Reader on SQL (Structured Query Language)

15 Creating and Manipulating Table Definitions (Create, Alter+Add, Drop)

The first stage in setting up an SQL database is fo define the tables. Tables can only be created by
users with DBA or RESOURCE authority (DBA: DataBase Administrator).

15.1 CREATE TABLE
The syntax of the CREATE TABLE command is:

CREATE TABLE table-name

(column-name-| data-type-| [NOT NULL]

[, column-name-2 data-type-2 [NOT NULL]]...)
[IN dbspace-name]

table-name, column-name:
consist of up to 18 characters which can be upper or lower case letters, numbers, $, #, @ or
underscore. The first character cannot be a number.

data-type:

may be any of the following:

1. SMALLINT A whole number (integer) between —32,767 and +32,767.

2. INTEGER A whole number (integer) between -2,147,483,647 and
+2,147,483,647.

3. DECIMAL (m,n) A decimal number consisting of m digits (maximum 18), an optional
decimal marker located to the left of n digits and an optional sign (+
or -). In other words, a total of m digits, n of those after the decimal
point and m-n before it, possibly with a numeric sign.

4. FLOAT A floating point number. For example: 1, 1.5, 1.23E45, 1.23E-45. The
maximum floating point value depends on the actual computer
hardware being used.

5. CHAR (n) A character string of fixed length (n) where n is at least 1 and at most
254,

6. VARCHAR (n) A variable length character string of maximum length (n) where n is at
least 1 and at most 254. SQL will only store the actual length.

7. LONG VARCHAR A variable length character string of up to 32,767 characters.

Note: Nowadays most RDBMS have additional data-types like DATE, TIME, and BINARY etc.

NOT NULL
specifies that the column cannot contain any null fields. In other words, each field of the
column must always contain a value.

dbspace-name

is the name of the database file in which the table is to be placed. If the IN dbspace-name

clause is omitted, the table will be placed according to the following rules:

e [fyou own one or more private dbspaces, the table will be created in the private dbspace
you acquired first.

e Ifyou do not own any private dbspaces and you have DBA authority, the table will be
created in the main dbspace. This is the dbspace that is created when the database is
initially created. Its name is the same as that of the database.

NIII / Radboud University of Nijmegen (the Netherlands) 69

Reader on SQL (Structured Query Language)

15.1.1 Example
Create a table which can hold all the facts about presidents as presented in the table PRESIDENT:

CREATE TABLE PRESIDENT
(PRES_NAME CHAR (15) NOT NULL,
BIRTH_YR SMALLINT NOT NULL,
YRS_SERV ~ SMALLINT NOT NULL,
DEATH_AGE SMALLINT,
PARTY CHAR (12) NOT NULL,
STATE_BORN VARCHAR (14) NOT NULL)

15.2 DROP TABLE
The syntax of the DROP TABLE command is as follows:

DROP TABLE table-name

When a table is dropped, the table definition, contents, indexes and views on the table, as well as all
permissions to the table, are also dropped.

15.3 ALTER TABLE

A table definition can be modified to include new columns. The ALTER TABLE command appends a
new column to the right hand side of an existing table. A column can be added irrespective of whether
the table already contains rows of information, or is empty.

The syntax of the ALTER TABLE command is:

ALTER TABLE table-name ADD column-name data-type

The arguments table-name, column-name, and data-type are the same as for the CREATE TABLE
command.

15.3.1 Example
Add a new column to the table STATE for the population of the state at the time of entry to the union
of states.

ALTER TABLE STATE ADD POP_ENTERED SMALLINT

To see the effect of the ALTER TABLE command, suppose the query to display all states beginning
with 'M' is issued.

SELECT *

FROM STATE

WHERE STATE_NAME LIKE 'M%'

Result:

STATE_NAME | ADMIN_ENTERED | YEAR_ENTERED | POP_ENTERED
Massachusetts ? 1776 ?
Maryland ? 1776 ?
Mississippi 8 1817 ?
Maine 8 1820 ?
Missouri 9 1831 ?
Michigan 12 1837 ?
Minnesota 18 1858 ?
Montana 26 1889 ?

NIII / Radboud University of Nijmegen (the Netherlands) 70

Reader on SQL (Structured Query Language)

Note:
e A column cannot be inserted amongst columns that have already been defined for a table. It
can only be appended to the right hand side of the table.
e A column that is added to a table cannot be specified as NOT NULL, since there is no way of
specifying a value for the column for each of the rows that might already exist in the table.

15.4 CREATE INDEX

Creating indexes for your tables is an extremely important part of setting up a database. Indexes can
dramatically improve the performance of SQL queries, and also provide automatic checking for
unwanted duplication of data.

Indexes provide a quick means of finding rows in a table. All SQL commands which have a WHERE
clause use indexes if possible. This means that indexes can improve the performance of the SELECT,
UPDATE and DELETE commands.

The use of indexes by SQL is invisible to the user. SQL knows which indexes are available and
automatically determines the most efficient combination of indexes to answer your query. This is
called automatic optimization.

Indexes can be created or dropped at any time during a table's lifetime. If a new index has been created
to speed up the evaluation of a query, that index is used automatically in later processing of that query
Furthermore, if an index is dropped, queries that previously used the index will use an alternative
method to obtain the necessary result. In other words, routines, stored queries and commands entered
interactively are all independent of the existence of indexes.

The syntax of the CREATE INDEX command is:

CREATE [UNIQUE] INDEX index-name ON [creator.]Jtable-name
(column-name-1 [ASC | DESC] [,column-name-2 [ASC | DESC] ...)

UNIQUE
specifies that each field value (or combination of field values) for the columns specified in the
CREATE INDEX command may appear only once in the table.

Note: Within a unique index, NULL is considered to be a value. This means that NULL can
occur only once in a column which has a unique index defined on it.

ASC | DESC

specifies the ordering of the rows used for the internal implementation of the index.
ASC indexes are sometimes more efficient.

A table can have many indexes, and each index can reference up to 16 columns in the table.
An index can only apply to a single table.

Two examples of indexes are as follows:

CREATE INDEX STATE_NAME_INDEX ON STATE (STATE_NAME)

CREATE INDEX STATE_ADMIN_INDEX ON STATE (STATE_NAME, ADMIN_ENTERED)
We can represent these two indexes diagrammatically as follows:

STATE_NAME | ADMIN_ENTERED | YEAR_ENTERED

< =========== > STATE_NAME_/NDEX
< = > STATE_ADMIN_INDEX

NIII / Radboud University of Nijmegen (the Netherlands) 71

Reader on SQL (Structured Query Language)

15.5 Use of indexes for performance enhancement
To make the best use of indexes, you need to understand when they are used. The following SELECT
command uses the index STATE NAME INDEX to produce the SELECT result of:

SELECT *
FROM STATE
WHERE STATE_NAME = 'Texas'

Instead of having to scan the entire STATE table looking for rows where the state is Texas, SQL can
use the index to go directly to the correct row.

The following WHERE clauses would also use STATE NAME INDEX:
WHERE STATE_NAME > 'ldaho'
WHERE STATE_NAME < 'Utah'
WHERE STATE_NAME IN ('Kansas', Oregon', 'Nevada')
WHERE STATE_NAME BETWEEN 'Idaho' AND 'Utah’

The LIKE operator is the only operator that never uses an index. For example, the following WHERE
clause would not use STATE NAME INDEX:
WHERE STATE_NAME LIKE 'M%'

However, in this case the restriction can be overcome by using the BETWEEN operator. The following
WHERE clause could be used instead of the one containing the LIKE clause:

WHERE STATE_NAME BETWEEN ‘M’ AND 'MZ'
Multi-column indexes like STATE _ADMIN INDEX are used to go directly to the rows which satisfy
the WHERE clause if all columns covered by the index are used in the WHERE clause, and the
comparisons are connected by AND.

For example, the following WHERE conditions use STATE_ ADMIN_INDEX to find the correct
rOWS:
WHERE STATE_NAME > 'ldaho’ AND ADMIN_ENTERED < 10

WHERE STATE_NAME BETWEEN 'ldaho' AND 'Utah’
AND ADMIN_ENTERED BETWEEN 10 AND 20

The rows which satisfy the WHERE clauses given above are obtained directly using the index
STATE _ADMIN INDEX. SQL does not have to scan any rows to determine whether they satisfy the
conditions.

The exception is when one or more of the columns covered by the index is compared to a set of
values. In other words, if IN, =ANY, =ALL or another set operation has been used, a multi-column
index is used for one column only.

The following WHERE-condition does not use STATE_ ADMIN _INDEX:
WHERE STATE_NAME IN ('ldaho', 'Utah')
AND ADMIN_ENTERED BETWEEN 10 AND 20

The WHERE clause above would use STATE NAME INDEX to help find all the state names in the
specified set, and scan these for the ADMIN _ENTERED condition.

Multi-column indexes can also be used to answer queries if the WHERE clause refers to only the first
column in the index, and there are no other indexes on this column which could be used to answer the
query more quickly. This is less efficient than using an index which is defined only on the required
column, but is usually more efficient than no index at all. If there is an index defined on the single
column needed to answer the query, it will be used in preference to a multi-column index.

NIII / Radboud University of Nijmegen (the Netherlands) 72

Reader on SQL (Structured Query Language)

In our example, STATE_NAME_INDEX would be used to answer the queries on STATE NAME,
except when ADMIN_ENTERED is used with an AND, when STATE_ADMIN_INDEX is preferred.
This is called major key processing. On the other hand, STATE_ADMIN_INDEX cannot be used to
answer queries which only refer to ADMIN_ENTERED in their WHERE clause. Major key
processing only works for the first columns in the index.

Indexes are aids solely to improve the performance of SQL in retrieving table rows, and are not
necessary for accessing stored data. If no appropriate indexes can be found on a table when processing
a particular SELECT command, the entire table will be scanned to find the rows which satisfy the
conditions. This is much slower than using an index if the result is only a small proportion of the rows
in a large table.

Indexes speed up retrieval of data but slow down operations involving inserting new data or updating
existing data because of the overhead in maintaining the index. For example, when a new row is
inserted into a table, indexes for that table have to be updated to include the new row.

You should think carefully about the kinds of queries that you expect to be asked most often, and
define indexes which help to answer these queries.

15.6 Use of indexes as a data integrity check

In addition to speeding up evaluation of your queries, unique indexes provide a valuable means of
checking the integrity of information entered in a table. SQL will not accept duplicates in columns on
which a unique index is defined. For instance, SQL will not allow you to add an additional row to the
STATE table with the name Texas if the unique index STATE NAME INDEX exists. SQL also
prevents a row in the table from being changed so that there are duplicates in the columns which are
covered by a unique index. This means that you do not have to worry about unwanted and possibly
disastrous duplicate information being entered.

15.7 DROP INDEX
The syntax for the DROP INDEX command is: DROP INDEX index-name

NIII / Radboud University of Nijmegen (the Netherlands) 73

Reader on SQL (Structured Query Language)

16 Updating the database (Insert, Update+Set, Delete)

There are three methods of update available:
A) Add one or more new rows to a table within the database
B) Modify one or more existing rows of a table within the database
C) Delete one or more existing rows from a table within the database

16.1 Adding rows to a table: the INSERT command

The INSERT command has two formats:
Format 1 adds a single new row to a table.
Format 2 adds one or more existing rows (which are selected or computed from other tables) into
a table.
The two formats are described below.

Format 1
INSERT [INTO] [creator.] {table-name | view-name } [(column-names)]
VALUES (data-items)

Data-items is a list of one or more values, separated by commas, to be inserted into the new row for
the columns specified in column-names. The first data-item value is inserted in the first column-name
specified; the second data-item value is inserted in the second column-name specified, etc. A null
value is inserted into a field by typing the word NULL for the data-item value. The data items must be
compatible in type to the matching columns.

Column names from the table that were not specified in the column-name list are given a null value;
therefore, you must remember to include in the list all the NOT NULL columns in the table.

If no column names are specified, then a column list in the order of the table template is assumed.

Format 2
INSERT INTO [creator.] { table-name | view-name } [(column-names)]
select-statement

The select statement selects the data to be inserted from another table. The number of columns
retrieved by the select statement must match the number of columns for the insert.

The columns selected must be type-convertible with the columns into which they will be inserted
(numeric to numeric, character to character).

Notes:
1. Creator is not necessary for tables created by the current user.
2. Single quotes are required around character data values. A quote is represented in a string by two
consecutive quotes.
3. The table specified in the FROM clause of the Select statement must not be the same as the table
into which information is being inserted. You cannot use the INSERT command to duplicate
rows or parts of rows in a single table.

Example:
To add a new row to the VERY RECENT_ PRES table (described in a previous chapter):

INSERT INTO VERY_RECENT_PRES
VALUES ('Nextpres | M', 1940, 2, NULL, 'Teaparty', 'Allstates’)

NIII / Radboud University of Nijmegen (the Netherlands) 74

Reader on SQL (Structured Query Language)

If we now enter the query:

SELECT *
FROM VERY_RECENT_PRES
Result:

PRES_NAME | BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Carter J E 1924 4 ? Democratic | Georgia
Ford GR 1913 2 ? Republican | Nebraska
Johnson L B 1908 5 65 Democratic | Texas
Kennedy J F 1917 2 46 Democratic | Massachusetts
Nixon R M 1913 5 ? Republican | California
Reagan R 1911 3 ? Republican | lllinois
Nextpres | M 1940 2 ? Teaparty Allstates

Note that NULL has been entered to indicate the president has no death age.

Example 2:
INSERT INTO VERY_RECENT_PRES (PRES_NAME, BIRTH_YR)
SELECT CANDIDATE, ELECTION_YEAR
FROM ELECTION
WHERE WINNER_LOSER_INDIC ='W

AND ELECTION_YEAR > 1990

After this command has been processed, SQL can display a message like:
ARI5001 SQL PROCESSING SUCCESSFUL.
SQLCODE =0 ROWCOUNT = 2.

The table VERY RECENT PRES will now contain:

PRES_NAME | BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Carter JE 1924 4 ? Democratic | Georgia

Ford GR 1913 2 ? Republican | Nebraska
Johnson LB 1908 5 65 Democratic | Texas
Kennedy J F 1917 2 46 Democratic | Massachusetts
Nixon R M 1913 5 ? Republican | California
Reagan R 1911 3 ? Republican | lllinois
Nextpres | M 1940 2 ? Teaparty Allstates
Honour | 1995 ? ? ? ?

Camelot M 1999 ? ? ? ?

16.2 Updating rows of a table: the UPDATE/SET .. -command
The syntax of the UPDATE command is:
UPDATE [creator.] table-name
SET column-name-1 = expression-1
[, column-name-2 = expression-2]
[WHERE search-condition]

column-name-1
is the name of the first column to be updated.

expression-1
is the new value to be placed in column-name-1. This expression may be any SQL expression,
including a subquery. It may contain constants, NULL, column names and the arithmetic
operators +, -, ¥ , /.

NIII / Radboud University of Nijmegen (the Netherlands) 75

Reader on SQL (Structured Query Language)

column-name-2
is the name of the second column to be updated.

expression-2
is the new value to be placed in column-name-2.

search-condition
specifies the rows to be updated (same power as in the SELECT command).

Note:
All rows that satisfy the specified condition are updated; if no search condition is given, a// rows in the
named table are updated.

Example
UPDATE VERY_RECENT_PRES
SET STATE_BORN = 'Texas'

WHERE STATE_BORN IS NULL

Result (shown after submitting a Select command):

PRES_NAME | BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Kennedy J F 1917 2 46 Democratic | Massachusetts
Johnson LB 1908 5 65 Democratic | Texas

Nixon R M 1913 5 ? Republican | California

Ford GR 1913 2 ? Republican | Nebraska
Carter JE 1924 4 ? Democratic | Georgia
Reagan R 1911 3 ? Republican | lllinois
Nextpres | M 1940 2 ? Teaparty Allstates
Honour | 1995 ? ? ? Texas

Camelot M 1999 ? ? ? Texas

The values in another table can be used to update the rows of a particular table. To do this, a subquery
is used to set new column values.

Example
Set the party of all presidents whose party is unknown to the party which was in power when the state
in which the president was born entered the union.

UPDATE RECENT_PRESIDENTS
SET PARTY = (SELECT PARTY
FROM PRESIDENT
WHERE PRES_NAME =
(SELECT MIN (PRES_NAME)
FROM ADMINISTRATION
WHERE ADMIN_NR =
(SELECT ADMIN_ENTERED
FROM STATE
WHERE STATE_NAME =
RECENT _PRESIDENTS.STATE_BORN)))
WHERE PARTY IS NULL

Result:
PRES_NAME | BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Kennedy J F 1917 2 46 Democratic | Massachusetts
Johnson LB 1908 5 65 Democratic | Texas

NIII / Radboud University of Nijmegen (the Netherlands) 76

Reader on SQL (Structured Query Language)

Nixon R M 1913 5 ? Republican | California
Ford GR 1913 2 ? Republican | Nebraska
Carter JE 1924 4 ? Democratic | Georgia
Reagan R 1911 3 ? Republican | lllinois
Nextpres | M 1940 2 ? Teaparty Allstates
Honour | 1995 ? ? Democratic | Texas
Camelot M 1999 ? ? Democratic | Texas
Notes

e There must be only one column or expression in the subquery SELECT list. If you want to set
several columns in a table to the values occurring in other tables, you will need a subquery for
each column.

e The subquery must return a single value or none. If it returns no value, NULL is taken.

e The subquery is usually a correlated subquery. There is almost always a WHERE clause in the
subquery. This is because you need to specify which rows from the source table are to be used
to update which rows in the target table.

e Ifyou only wish to update some rows of the target table, there should be a WHERE clause on
the UPDATE command. In the example above, we only wished to update the rows for which
we did not already know the party. The rows for which the party was already known were
skipped by using the WHERE clause of the UPDATE command.

16.3 Deleting rows from a table: the DELETE -command

The DELETE command deletes all the rows of a named table which satisfy a specified search
condition.

The syntax of the DELETE command is:

DELETE [FROM] [creator.] table-name
[WHERE search-condition]

search-condition
specifies the row or rows to be deleted (same power as in the SELECT command).

Example:

In the previous examples for the INSERT command (employing Format 1), the president Nextpres | M
was added to the VERY RECENT PRES table.

In example 2 for the INSERT command (employing Format 2), the two fictitious presidents 'Honour I'
and 'Camelot M' were added to the VERY RECENT_PRES table.

To delete the rows that were inserted in the above examples, the following DELETE statement could
be used:

DELETE FROM VERY_RECENT_PRES
WHERE BIRTH_YR >= 1940

Note

INSERT and UPDATE should not be confused with ALTER TABLE (see previous chapter) which
adds one new column on the right hand side of an existing table.

NIII / Radboud University of Nijmegen (the Netherlands) 77

Reader on SQL (Structured Query Language)

17 Views (definitions for virtual tables’)

The VIEW feature of SQL provides the user with the ability to treat the result of a SELECT statement

as if it were a real table, with some exceptions which are discussed later.

The major functions of a view are:

1. To provide a user with a mechanism to break down long and complex queries into more
manageable pieces.

2. To provide a user with a table which contains only the information of interest, in the form required.
For example, a view can be used to look upon a combination of several joined tables as one big
table.

3. To provide the data administrator with a mechanism, in combination with the authorisation scheme,
to be able to control access to a table or tables.

It is essential to know that a view is a virtual table. In other words a view does not have a real,
permanent table population associated with it, but is recalculated each time that it is referenced by an
SQL statement.

171 CREATE VIEW
A view is defined by a SELECT command.
The syntax is:

CREATE VIEW view-name [(column-name-list)] 3
AS select-statement

As an example, to be able to query the table presented as ‘RECENT PRESIDENTS’, with only 9
rows of the larger table PRESIDENT, we can define the following view:

CREATE VIEW RECENT_PRESIDENTS AS
SELECT *
FROM PRESIDENT
WHERE BIRTH_YR > 1880

Views can be used to define new views as in the following example:

CREATE VIEW VERY_RECENT_PRES AS
SELECT *
FROM RECENT_PRESIDENTS
WHERE BIRTH_YR > 1900

These views can be used as though they were real tables, as shown in the following SELECT
command:

3 Note: indicating the ‘column-name-list’ is:
e required: if one or more values from the SELECT-line are ‘derived’
for example: CREATE VIEW NUMBER_MARRIAGES (PRES_NAME, NUMBER)
AS SELECT PRES_NAME, COUNT (*)
FROM PRES_MARRIAGE GROUP BY PRES_NAME

e optional: if in the select-line just appear column names of an existing table and you those names just will be
copied ‘unmodified’
for example: CREATE VIEW Recent_Presidents
AS SELECT * FROM PRESIDENT WHERE BIRTH_YR > 1880

NIII / Radboud University of Nijmegen (the Netherlands) 78

Reader on SQL (Structured Query Language)

SELECT *

FROM VERY_RECENT_PRESIDENTS

ORDER BY PRES_NAME

Result:

PRES_NAME | BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Carter JE 1924 4 ? Democratic | Georgia
Ford GR 1913 2 ? Republican | Nebraska
Johnson L B 1908 5 65 Democratic | Texas
Kennedy J F 1917 2 46 Democratic | Massachusetts
Ni.xon R M 1913 5 ? Republican | California
Reagan R 1911 3 ? Republican | lllinois

Since a view is a virtual table, changes which do not apply directly to the table on which the view is
defined cannot be processed. It is meaningless to update calculated quantities. Only real rows and
columns can be updated.
Views can be treated as if they were real tables, with the following general exception: *
Operations which change existing rows or add new rows such as UPDATE, INSERT or
DELETE, can only be used on views which have only one table in the FROM clause of the
SELECT statement used to define the view.

17.2 Addition: use of views to emulate the COUNT (DISTINCT ...) - construct
In a RDBMS -as MSAccess- without the COUNT(DISTINCT ...)-possibility we can use a view
definition to emulate that possibility.

Imagine that we want to know the number of [different] states where presidents are born.

The ‘normal” SQL-query to find an answer to this question would be:

SELECT COUNT (DISTINCT state_born)
FROM president

With result: 18

In systems like MSAccess, we can find an answer by first creating a view with only the distinct
state_born names:

CREATE VIEW DISTINCT_STATEBORN AS

SELECT DISTINCT state_born
FROM president
followed by the query:
SELECT COUNT (*)
FROM DISTINCT_STATEBORN
which of course will give us the same result: 18

Watch out: in MSAccess a view is not defined through a ‘CREATE VIEW ...’-command, but by just
typing in the SELECT-query and saving that query with the choosen view-name (so
saving it as ‘distinct_stateborn’).

4 Some RDBMS can have additional restrictions on the use of view definitions.

NIII / Radboud University of Nijmegen (the Netherlands) 79

Reader on SQL (Structured Query Language)

If in one query we not only want to ask for this number of different native states, but for instance also
preceded by the number of presidents, then in a ‘normal’ RDBMS the query would be:

SELECT COUNT(*), COUNT (DISTINCT state_born)
FROM president

With result: 39 18
In MSAccess we would have to query:

SELECT COUNT(*), (SELECT COUNT(*) FROM DISTINCT_STATEBORN)
FROM president

with of course the same result.

17.3 View-definition with the With Check Option

We already remarked that in specific circumstances (supposing that a view is directly based on the
data of just one table and thus for instance does not deliver ‘derived’ values), a view can be used to
change data in the underlying table through UPDATE-, INSERT- or DELETE-commands.

By means of the With Check Option in the CREATE VIEW-definition it will be possible to enforce
restrictions on such changes, for example to prevent that (yes or no by accident) impossible values will
end up in a database. By adding the With Check Option only those update-commands will be accepted,
which, if executed, will cause an updated record that still is contained within the view-definition.

If for example you want to prevent that somebody can enter ‘impossible values’ for birth_year
(<=1700) or death_ages (<= 28), then you can agree (or even -see later- enforce through access rights),
that users only can make changes on the PRESIDENT-table through the next view:

CREATE VIEW PRES_VIEW AS

SELECT *
FROM PRESIDENT
WHERE BIRTH_YR >= 1700 AND DEATH_AGE >=28

WITH CHECK OPTION

By using this WITH CHECK OPTION an unintentionally change through an UPDATE-command on
this PRES_VIEW-view of a death_age of -93 (negative) for a president, should end in a situation
where the involved record no longer would be shown through this view; so the WITH CHECK OPTION
now will cause that such an update-attempt will generate an error message and that the negative
death_age will not end up in the database.

Of course for such a database-protection we have to take care that nobody still can approach the
underlying table to carry out updates. Queries better -i.e. faster- can act directly on the base tables.

NIII / Radboud University of Nijmegen (the Netherlands) 80

Reader on SQL (Structured Query Language)

18 Controlling the Execution of Commands (Commit / Rollback Work)

A command can be prevented from executing immediately, it can be started, cancelled or ended. There
are a number of commands to be used for these and other purposes.

18.1 AUTOCOMMIT modes
Two modes of executing SQL commands exist:
e Mode AUTOCOMMIT ON:
Every command that is entered commits the previously entered command. This means that
every command is a transaction, and that we also have the option of entering ROLLBACK
WORK to undo the last command.
e Mode AUTOCOMMIT OFF:
Modifications of tables specified in a single SQL command, or in a series of consecutive SQL
commands, are committed only upon encountering a COMMIT WORK command. This mode
allows us to determine a logical unit of work, consisting, in general, of a series of SQL
commands, which are executed as one transaction and are delimited by the command
COMMIT WORK and ROLLBACK WORK (or CANCEL).

This mode can be specified using the SET AUTOCOMMIT command:
SET AUTOCommit { ON | OFF}

When the system is started, (generally) AUTOCOMMIT is ON by default.
If we detect an error in a command or logical unit of work, we may use the SQL commands
ROLLBACK WORK or CANCEL to undo the current logical unit of work.

18.2 The ROLLBACK WORK command

ROLLBACK WORK ends a logical unit of work. If AUTOCOMMIT is OFF, all tables updated in the
current logical unit of work will be restored to their appearance before the last COMMIT WORK
command, or, if there was no such command, since the last AUTOCOMMIT SET OFF command. If
AUTOCOMMIT is ON, and if we enter a ROLLBACK WORK immediately following an INSERT,
DELETE or UPDATE command this table will be restored to its state prior to that command.

NIII / Radboud University of Nijmegen (the Netherlands) 81

Reader on SQL (Structured Query Language)

19 Granting and Revoking User Privileges

User privileges can be granted and revoked using the GRANT and the REVOKE commands
respectively.

19.1 GRANT
GRANT is an SQL command which allows a user holding specific privilege(s), to grant them to one or
more other users.
There are the following two formats for the GRANT command:
Format 1 For granting privileges on tables and views.
Format2 For granting SPECIAL privileges.

Format 1 of the GRANT command is used to grant privileges on a table or view to other users. When
using format 1 of the GRANT command, we must not only possess the privilege we want to grant to
another user, but also the GRANT OPTION as well; the GRANT OPTION may or may not be passed
along with the privilege.

The syntax of the GRANT command is as follows:

Format 1 (For granting privileges on tables and views)

GRANT ({list-of-privileges | ALL }

ON [creator.] {table-name | view-name }
TO { list-of-users | PUBLIC }

[WITH GRANT OPTION]

list-of-privileges
is one or more of the following privileges:

Privilege Tables | Views
SELECT

INSERT

DELETE

UPDATE [(column-name-list)]
INDEX

ALTER

XXX X

XXX XX ([X

Notice that if UPDATE is to be granted, the option (column-name-list) can be used to grant privileges
only on certain columns of the specified table or view. If multiple columns are specified, we separate
them with commas. If column-name-list is not specified, the privilege(s) is granted for all columns.

ALL
specifies that we want to grant all privileges that we have on the specified table. ALL is not
applicable to views.

creator
is the userid of the owner of the table or view on which the privilege{s) are to be granted,
followed by a period. It is not necessary for our own tables or views. To grant privileges on
another user's table, we must have been granted the privilege with the GRANT OPTION.

table-name | view-name
is the name or the table or view on which we want to grant privilege(s).

list-of-users

NIII / Radboud University of Nijmegen (the Netherlands) 82

Reader on SQL (Structured Query Language)

is a list of userids, separated by commas, of users to whom we want to grant privileges.

PUBLIC
specifies that we want to grant the privilege(s) specified to all users.

WITH GRANT OPTION
specifies that we want to allow the user(s) specified to be able to grant these privileges to
someone else.

Example:

The following command gives the update privilege on the NR_CHILDREN column of the
PRES_MARRIAGE table and the select privilege on the entire PRES_ MARRIAGE table to user
Reagan. It also allows Reagan to pass these privileges on to others.

GRANT UPDATE (NR_CHILDREN), SELECT
ON PRES_MARRIAGE

TO REAGAN

WITH GRANT OPTION

Format 2 of the GRANT command is used to grant special privileges to other users. In order to use
format 2 of the GRANT command, you must have DBA Authority.

The special privileges which may be granted are:

DBA Authority
This is the highest level or authorisation provided, and implies CONNECT, RESOURCE and
SCHEDULE authorities. A user with DBA authority can perform any operation on any table
in the database.

CONNECT Authority
CONNECT authority is required to connect to SQL. Granting CONNECT authority in effect
creates a new userid.

RESOURCE Authority
RESOURCE authority is required to acquire new database files (DBSPACES) and create
tables in public DBSPACES.

SCHEDULE Authority
SCHEDULE authority allows connection to other userids without specifying a password.

The syntax of the format 2 of the GRANT command is as follows:
Format 2 (For granting special privileges)
GRANT { CONNECT TO list-of-users [IDENTIFIED BY pswrd-list] |
DBA TO list-of-users [IDENTIFIED BY pswrd-list]

|
SCHEDULE TO list-of-users [IDENTIFIED BY pswrd-list] |
RESOURCE TO list-of-users }

list-of-users
is a list of userids separated by commas. It identifies those users who are to receive the privilege(s).

pswrd-list

NIII / Radboud University of Nijmegen (the Netherlands) 83

Reader on SQL (Structured Query Language)

is a password for each userid listed in list-of-users (separated by commas). For granting DBA
or schedule authority, these passwords may be omitted if they have previously been
established for all of the users listed.

If DBA Authority is passed to a user, that user also receives connect, resource and schedule authority
regardless of whether they are specified on the GRANT command. Furthermore, granting anyone of
these privileges to a user without connect authority has the effect that this user automatically receives
connect authority.

19.2 REVOKE

If we want to revoke a privilege from a user, we have to use a REVOKE command. A general rule is
that a user can only revoke those privileges from another user, which he previously granted to that
user. However, any privilege revoked from a user is also revoked from anyone to whom that user may
have granted it.

To remove the GRANT OPTION granted by a previous GRANT command, the privilege itself must
first be revoked, and then the same privilege without the GRANT OPTION must be re-granted.

The formats of the REVOKE command are very similar to the GRANT command and the parameters
have the same meaning:

Format 1 (For revoking privileges on tables and views)
REVOKE ({ list-of-privileges | ALL}
ON [creator.] { table-name | view-name }

FROM {list-of-users | PUBLIC}

Format 2 (For revoking special privileges)
REVOKE { DBA
CONNECT |
RESOURCE |

SCHEDULE } FROM list-of-users

Format 2 of the REVOKE command can be applied only by a user with DBA authority.

Using this format, such a user can revoke any special privilege from any user, regardless of who
originally granted this special privilege. However, resource or schedule authority cannot be revoked
from a user with DBA authority. A user with DBA authority cannot revoke any privileges from
himself, therefore ensuring that there is always one user with DBA authority for the database.

NIII / Radboud University of Nijmegen (the Netherlands) 84

Reader on SQL (Structured Query Language)

20 New possibilities with SQL-2 (SOL 1992)

Up until now we only considered possibilities of the (original) standard version of SQL (‘SQL1"),
which many times is also indicated as SQL/86. In 1989 this SQL/86 was extended to include an
(optional) ‘Integrity Enhancement Feature’, IEF, resulting in what was called SQL/89 (still indicated
as SQL1).

A greatly expanded version SQL2 was defined in 1992: SQL/92.

The most important aspects from SQL2 in comparison with SQL1 are that there exist more data-types,
more join-types and more integrity/constraint-maintaining possibilities...

In 1999 the SQL3 -standard was defined (with regular expression matching, recursive queries,
triggers, non-scalar types and some object-oriented features) and nowadays people are working on a
SQL4 definition.

But: be aware that many current RDBMS do not fully comply with the SQL2-rules (or even not with
all SQL1-rules; e.g. COUNT (DISTINCT...)).
We’ll limit ourselves to a discussion of certain important aspects of the SQL2-standard.

20.1 New join-types in SQL2 (especially the outer join)
First of all: all studied query-constructs (like joins) from SQL1 are also valid and usable in SQL2!
But SQL2 gives us some new possibilities for joins.

SQL2 uses special syntax for various kinds of joins:

e cross join

e qualified join: conditional join € on clause
column-list join € using clause

e natural join

e union join

Qualified and natural joins may be further classified into the following types:

e inner € this is the default
left
e outer: right
full
LJoin type New syntax in SOQL/92 (SQL2) |SQLI syntax
Cross select * select *
from A cross join B from A,B
conditional [select * select *
from A join B from A,B
on condition where condition
column-list [select * select A.cl,...,... - -omit B.cl, ...
from A join B from A,B
using (cl, ...) where A.cl =B.cl and ...
- -cl, ... are unqualified - - join columns are qualified

NIII / Radboud University of Nijmegen (the Netherlands) 85

Reader on SQL (Structured Query Language)

natural inner |[select * select A.c,...,... --omitB.c, ...
from A natural [inner] join B [from A,B

where A.c=B.c

- - join column in result is ¢
- - join columns in result is A.c

left outer select * select A.c,... { omit B.c }
from A left [outer] join B from A,B
on condition where A.c=B.c
Also: union all
right [..] join |- nulls generated for nonmatches .. [select c, ..., *?’, ..
full [...] join from A
- eventually ‘natural ...’ where c notin (select c from B)

- for composite ¢ use exists with correlated
subquery..

Some observations to the new SQL2 join types

= Natural joins: the RDBMS analyses if there are common column-names and uses the common
names automatically as join-criterion-columns. If there are no common columns at all, a A
NATURAL JOIN B degeneratestoa A CROSS JOIN B.

= Most actual RDBMS’s (including SQL Server) cannot handle natural joins nor the ‘column-list’-
join (using...) ...

= A very interesting new join type is the so called [left|right|full] outer join.

20.1.1 Outer joins: show the row[part] of the (Left|Right|Full)-table, also if there is no
connected row in the joined table

Lets consider the following examples:

SELECT P.pres_name, death_age, hobby

FROM president P LEFT OUTER JOIN pres_hobby H
ON P.pres_name = H.pres_name

WHERE death_age > 83

Result:

PRES_NAME DEATH _AGE | HOBBY

Adams J 90 (null)

Madison J 85 (null)

Hoover H C 90 Fishing

Hoover H C 90 Medicine Ball

TrumanH S 88 Fishing

TrumanH S 88 Poker

TrumanH S 88 Walking

From the result table we may conclude, that a left outer join shows all allowed (by the WHERE-
clause) rows from the left table with connected rows from the right table; if there is no connected row
from the right table then the left row-data are still shown (with ‘null’ or blanks at the places reserved
for data from the right table).

From the shown result table we can conclude that the presidents Adams J and Madison J did not
have any hobby registered.

NIII / Radboud University of Nijmegen (the Netherlands) 86

Reader on SQL (Structured Query Language)

With a right outer join, the situation is comparable, albeit that all rows from the table at the right will
be shown, if necessary combined with nulls or blanks.

SELECT P.pres_name, state_born, state_name, year_entered
FROM president P RIGHT OUTER JOIN state S
ON state_born = state_name

WHERE year_entered BETWEEN 1845 AND 1850

Result:
PRES_NAME STATE_BORN | STATE_ NAME | YEAR_ENTERED
(null) (null) Florida 1845
Eisenhower DD | Texas Texas 1845
Johnson L B Texas Texas 1845
Hoover H C Towa Towa 1846
(null) (null) Wisconsin 1848
Nixon RM California California 1850

All states [allowed by the WHERE-clause] from the right [state] table are shown and if possible,
combined with corresponding row-data from the left [president] table. We see that neither in Florida
nor in Wisconsin was born any president.

20.1.2 Outer joins: offer a possibility to emulate a ‘NOT IN ...’-subquery
In SQLIT it was not possible to replace a ‘NOT IN ...’-subquery by a join.

In SQL2, however, the outer join-construct offers that possibility.

E.g. consider the next query and its result:

SELECT P.pres_name, state_born, spouse_name

FROM president P LEFT OUTER JOIN pres_marriage M
ON P.pres_name = M.pres_name

WHERE spouse_name IS NULL

Result:

PRES_NAME STATE_BORN | SPOUSE_NAME
Buchanan J Pennsylvania (null)

We conclude that to get an answer to the question: “Which presidents never married (show also the
name of their native state)?” can be answered in the next two ways:

By a (NOT IN..) subquery:

SELECT pres_name, state_born

FROM president

WHERE pres_name NOT IN (SELECT pres_name FROM pres_marriage)
Or by the next outer join:

SELECT P.pres_name, state_born

FROM president P LEFT OUTER JOIN pres_marriage M

ON P.pres_name = M.pres_name
WHERE spouse_name IS NULL

Of course, both queries give the same result:

PRES_NAME STATE_BORN
Buchanan J Pennsylvania

NIII / Radboud University of Nijmegen (the Netherlands) 87

Reader on SQL (Structured Query Language)

20.2 SQL2: new DDL-possibilities to enforce data-integrity
At [almost] any cost the content of a database must be kept integer. We may not allow having
conflicting data in our database.
SQL2 offers some nice new possibilities to enforce data-integrity.
For instance:
primary key (col-list)
* foreign keys (col-list) references tablename (unique-collist)
* check (table-condition-on-same-row)

As an example we consider some tables from the presidential database with their SQL2-DDL:

CREATE TABLE PRESIDENT

(
PRES_NAME CHAR(16) NOT NULL,

BIRTH_ YR SMALLINT NOT NULL,

YRS_SERV ~ SMALLINT NOTNULL CHECK BETWEEN 0 AND 12,
DEATH_AGE SMALLINT,

PARTY CHAR(11) NOT NULL,

STATE_BORN CHAR(15) NOT NULL,

PRIMARY KEY (PRES_NAME)

)
CREATE TABLE PRES_HOBBY

PRES_NAME CHAR(16) NOT NULL,
HOBBY CHAR(20) NOT NULL,
PRIMARY KEY (PRES_NAME, HOBBY)

)

ALTER TABLE PRES_HOBBY
ADD FOREIGN KEY (PRES_NAME) REFERENCES PRESIDENT (PRES_NAME)

A primary key can be considered as an improved ‘unique index’; every table should have a primary
key and its attributes must be [implicit or not] NOT NULL.

A foreign key points to a primary key in another table and means that a values in the attribute-fields of
the table are only allowed if those values also [already] exist in the referenced primary key of that
other table.

The check-possibility enforces that new data or updates are only allowed if the new values obey to the
conditions as imposed by the check-clause.

In a separate document we’ll discuss these (and other new) SQL2-possibilities for data-integrity
enforcement in more detail.

NIII / Radboud University of Nijmegen (the Netherlands) 88

Reader on SQL (Structured Query Language)

21 Appendix A: Presidential database table relationships

We will show hereafter a ‘relationships’-survey of the presidential database, with all the base tables in
it. For each table is indicated (by bold column-names) which column or columns are the primary key-
columns.

Through lines is sketched (as good as possible) the coherency between the tables (for instance a
PRES_NAME from the PRES_MARRIAGE-table must also occur in the PRES_NAME-column of the
PRES_MARRIAGE-table), so the foreign keys-columns.

Unfortunately we cannot conclude from this survey which columns are optional.

=7 Helationships _ O]
_|
1 i
DEATH_AGE B
o [PRRTY NF:_CHILDREN
STATE_BORM MAR_YEAR
1
ADMIN_ENTERED = [PrES_NAME
YEAR_ENTERED HOBEY
1] | 1 4

NIII / Radboud University of Nijmegen (the Netherlands) 89

Reader on SQL (Structured Query Language)

22 Appendix B : The presidential database

221

PRESIDENT

PRES_NAME BIRTH_YR | YRS_SERV | DEATH_AGE | PARTY STATE_BORN
Washington G 1732 7 67 Federalist Virginia
Adams J 1735 4 90 Federalist Massachusetts
Jefferson T 1743 8 83 Demo-Rep | Virginia
Madison J 1751 8 85 Demo-Rep | Virginia
Monroe J 1758 8 73 Demo-Rep | Virginia
Adams J Q 1767 4 80 Demo-Rep | Massachusetts
Jackson A 1767 8 78 Democratic | South Carolina
Van Buren M 1782 4 79 Democratic | New York
Harrison W H 1773 0 68 Whig Virginia

Tyler J 1790 3 71 Whig Virginia

Polk J K 1795 4 53 Democratic | North Carolina
Taylor Z 1784 1 65 Whig Virginia
Fillmore M 1800 2 74 Whig New York
Pierce F 1804 4 64 Democratic | New Hampshire
Buchanan J 1791 4 77 Democratic | Pennsylvania
Lincoln A 1809 4 56 Republican | Kentucky
Johnson A 1808 3 66 Democratic | North Carolina
GrantU S 1822 8 63 Republican | Ohio

Hayes RB 1822 4 70 Republican | Ohio

Garfield J A 1831 0 49 Republican | Ohio

Arthur C A 1830 3 56 Republican | Vermont
Cleveland G 1837 8 71 Democratic | New Jersey
Harrison B 1833 4 67 Republican | Ohio

McKinley W 1843 4 58 Republican | Ohio
Roosevelt T 1858 7 60 Republican | New York

Taft WH 1857 4 72 Republican | Ohio

Wilson W 1856 8 67 Democratic | Virginia
Harding W G 1865 2 57 Republican | Ohio

Coolidge C 1872 5 60 Republican | Vermont
Hoover H C 1874 4 90 Republican | lowa
Roosevelt F D 1882 12 63 Democratic | New York
Truman H S 1884 7 88 Democratic | Missouri
Eisenhower D D 1890 8 79 Republican | Texas
Kennedy J F 1917 2 46 Democratic | Massachusetts
Johnson L B 1908 5 65 Democratic | Texas

Nixon R M 1913 5 ? Republican | California

Ford GR 1913 2 ? Republican | Nebraska
Carter J E 1924 4 ? Democratic | Georgia
Reagan R 1911 3 ? Republican | lllinois

NIII / Radboud University of Nijmegen (the Netherlands)

90

Reader on SQL (Structured Query Language)

22.2

NIII / Radboud University of Nijmegen (the Netherlands)

PRES_MARRIAGE

PRES_NAME SPOUSE_NAME | PR_AGE | SP_AGE | NR_CHILDREN | MAR_YEAR
Washington G Custis M D 26 27 0 1759
Adams J Smith A 28 19 5 1764
Jefferson T Skelton M W 28 23 6 1772
Madison J ToddDDP 43 26 0 1794
Monroe J Kortright E 27 17 3 1786
Adams J Q Johnson L C 30 22 4 1797
Jackson A Robards R D 26 26 0 1794
Van Buren M Hoes H 24 23 4 1807
Harrison W H Symmes AT 22 20 10 1795
Tyler J Christian L 23 22 8 1813
Tyler J Gardiner J 54 24 7 1844
Polk J K Childress S 28 20 0 1824
Taylor Z Smith M M 25 21 6 1810
Fillmore M Powers A 26 27 2 1826
Fillmore M Mclintosh C C 58 44 0 1858
Pierce F Appleton J M 29 28 3 1834
Lincoln A Todd M 33 23 4 1842
Johnson A McCardle E 18 16 5 1827
GrantU S DentJ B 26 22 4 1848
Hayes R B Webb L W 30 21 8 1852
Garfield J A Rudolph L 26 26 7 1858
Arthur C A Herndon E L 29 22 3 1859
Cleveland G Folson F 49 21 5 1886
Harrison B Scott C L 20 21 2 1853
Harrison B Dimmick M S L 62 37 1 1896
McKinley W Saxton | 27 23 2 1871
Roosevelt T Lee AH 22 19 1 1880
Roosevelt T Carow E K 28 25 5 1886
Taft WH Herron H 28 25 3 1886
Wilson W Axson E L 28 25 3 1885
Wilson W GaltE B 58 43 0 1915
Harding W G De Wolfe F K 25 30 0 1891
Coolidge C Goodhue G A 33 26 2 1905
Hoover HC Henry L 24 23 2 1899
Roosevelt F D Roosevelt A E 23 20 6 1905
Truman H S Wallace E V 35 34 1 1919
Eisenhower D D | Doud G 25 19 2 1916
Kennedy J F Bouvier J L 36 24 3 1953
Johnson L B Taylor CA 26 21 2 1934
Nixon R M RyanTC 27 28 2 1940
Ford GR Warren E B 35 30 4 1948
Carter J E Smith R 21 18 4 1946
Reagan R Wyman J 28 25 2 1940
Reagan R Davis N 41 28 2 1952

91

Reader on SQL (Structured Query Language)

223

PRES_HOBBY
PRES_NAME HOBBY
Adams J Q Billiards
Swimming
Walking
Arthur C A Fishing
Cleveland G Fishing
Coolidge C Fishing
Golf
Indian Clubs
Mechanical Horse
Pitching Hay
Eisenhower D D | Bridge
Golf
Hunting
Painting
Fishing
Garfield J A Billiards
Harding W G Golf
Poker
Riding
Harrison B Hunting
Hayes R B Croquet
Driving
Shooting
Hoover HC Fishing
Medicine Ball
Jackson A Riding
Jefferson T Fishing
Riding
Johnson L B Riding
Kennedy J F Sailing
Swimming
Touch Football
Lincoln A Walking
McKinley W Riding
Swimming
Walking
Nixon R M Golf
Roosevelt F D Fishing
Sailing
Swimming
Roosevelt T Boxing
Hunting
Jujitsu
Riding
Shooting
Tennis
Wrestling
Taft WH Golf
Riding
Taylor Z Riding
TrumanH S Fishing
Poker
Walking
Van Buren M Riding
Washington G Fishing
Riding
Wilson W Golf
Riding
Walking

NIII / Radboud University of Nijmegen (the Netherlands)

92

Reader on SQL (Structured Query Language)

22.4 ADMINISTRATION

ADMIN_NR | PRES_NAME YEAR_INAUGURATED
1 Washington G 1789
2 Washington G 1793
3 Adams J 1797
4 Jefferson T 1801
5 Jefferson T 1805
6 Madison J 1809
7 Madison J 1813
8 Monroe J 1817
9 Monroe J 1821
10 Adams J Q 1825
11 Jackson A 1829
12 Jackson A 1833
13 Van Buren M 1837
14 Harrison W H 1841
14 Tyler J 1841
15 Polk J K 1845
16 Taylor Z 1849
16 Fillmore M 1850
17 Pierce F 1853
18 Buchanan J 1857
19 Lincoln A 1861

20 Lincoln A 1865
20 Johnson A 1865
21 GrantU S 1869
22 GrantU S 1873
23 Hayes R B 1877
24 Garfield J A 1881
24 Arthur C A 1881
25 Cleveland G 1885
26 Harrison B 1889
27 Cleveland G 1893
28 McKinley W 1897
29 McKinley W 1901
29 Roosevelt T 1901
30 Roosevelt T 1905
31 Taft WH 1909
32 Wilson W 1913
33 Wilson W 1917
34 Harding W G 1921
34 Coolidge C 1923
35 Coolidge C 1925
36 Hoover H C 1929
37 Roosevelt F D 1933
38 Roosevelt F D 1937
39 Roosevelt F D 1941
40 Roosevelt F D 1945
40 Truman H S 1945
41 Truman H S 1949
42 Eisenhower D D 1953
43 Eisenhower D D 1957
44 Kennedy J F 1961
44 Johnson L B 1963
45 Johnson L B 1965
46 Nixon R M 1969
47 Nixon R M 1973
47 Ford GR 1974
48 Carter J E 1977
49 Reagan R 1981

NIII / Radboud University of Nijmegen (the Netherlands) 93

Reader on SQL (Structured Query Language)

225 ADMIN_PR_VP

ADMIN_NR | PRES_NAME VICE_PRES NAME
1 Washington G Adams J
2 Washington G Adams J
3 Adams J Jefferson T
4 Jefferson T Burr A
5 Jefferson T Clinton G
6 Madison J Clinton G
7 Madison J Gerry E
8 Monroe J Tompkins D
9 Monroe J Tompkins D
10 Adams J Q Calhoun J
11 Jackson A Calhoun J
12 Jackson A Van Buren M
13 Van Buren M Johnson R M
14 Harrison W H Tyler J
15 Polk J K Dallas G M
16 Taylor Z Fillmore M
17 Pierce F De Vane King
18 Buchanan J Breckinridge
19 Lincoln A Hamlin H
20 Lincoln A Johnson A
21 GrantU S Colfax S
22 GrantU S Wilson H
23 Hayes R B Wheeler W
24 Garfield J A Arthur C A
25 Cleveland G Hendricks T A
26 Harrison B Morton L P
27 Cleveland G Stevenson A E
28 McKinley W Hobart G A
29 McKinley W Roosevelt T
30 Roosevelt T Fairbanks C W
31 Taft WH ShermanJ S
32 Wilson W Marshall T R
33 Wilson W Marshall T R
34 Harding W G Coolidge C
35 Coolidge C Dawes C G
36 Hoover H C Curtis C
37 Roosevelt F D Garner J N
38 Roosevelt F D Garner J N
39 Roosevelt F D Wallace H A
40 Roosevelt F D Truman H S
41 TrumanH S Barkley AW
42 Eisenhower DD | Nixon R M
43 Eisenhower DD | Nixon R M
44 Kennedy J F Johnson L B
45 Johnson L B Humphrey H H
46 Nixon R M Agnew ST
47 Nixon R M Agnew S T
47 Nixon R M Ford GR
47 Ford GR Rockefeller N
48 Carter J E Mondale W F
49 Reagan R Bush G

NIII / Radboud University of Nijmegen (the Netherlands) 94

Reader on SQL (Structured Query Language)

22.6

STATE

STATE_NAME | ADMIN ENTERED | YEAR_ENTERED
Massachusetts ? 1776
Pensylvania ? 1776
Virginia ? 1776
Connecticut ? 1776
South Carolina ? 1776
Maryland ? 1776
New Jersey ? 1776
Georgia ? 1776
New Hampshire ? 1776
Delaware ? 1776
New York ? 1776
North Carolina ? 1776
Rhode Island ? 1776
Vermont 1 1791
Kentucky 1 1792
Tennessee 2 1796
Ohio 4 1803
Louisianna 6 1812
Indiana 7 1816
Mississippi 8 1817
lllinois 8 1818
Alabama 8 1819
Maine 8 1820
Missouri 9 1821
Arkansas 12 1836
Michigan 12 1837
Florida 14 1845
Texas 15 1845
lowa 15 1846
Wisconsin 15 1848
California 16 1850
Minnesota 18 1858
Oregon 18 1859
Kansas 18 1861
West Virginia 19 1863
Nevada 19 1864
Nebraska 20 1867
Colorado 22 1876
North Dakota 26 1889
South Dakota 26 1889
Montana 26 1889
Washington 26 1889
Idaho 26 1890
Wyoming 26 1890
Utah 27 1896
Oklahoma 30 1907
New Mexico 31 1912
Arizona 31 1912
Alaska 43 1959
Hawaii 43 1959

NIII / Radboud University of Nijmegen (the Netherlands)

95

Reader on SQL (Structured Query Language)

22,7 ELECTION

ELECTION_YEAR | CANDIDATE VOTES | WINNER_LOSER_INDIC
1789 Washington G 69 W
Adams J 34 L
Jay J 9 L
Harrison R H 6 L
Rutledge J 6 L
Hancock J 4 L
Clinton G 3 L
Huntington S 2 L
Milton J 2 L
Armstrong J 1 L
Lincoln B 1 L
Telfair E 1 L
1792 Washington G 132 w
Adams J 77 L
Clinton G 50 L
Jefferson T 4 L
Burr A 1 L
1796 Adams J 71 W
Jefferson T 68 L
Pinckney T 59 L
Burr A 30 L
Adams S 15 L
Ellsworth O 11 L
Clinton G 7 L
Jay J 5 L
Iredell J 3 L
Henry J 2 L
Johnson S 2 L
Washington G 2 L
Pinckney C C 1 L
1800 Jefferson T 73 W
Burr A 73 L
Adams J 65 L
Pinckney C C 64 L
Jay J 1 L
1804 Jefferson T 162 W
Pinckney C C 14 L
1808 Madison J 122 W
Pinckney C C 47 L
Clinton G 6 L
1812 Madison J 128 W
Clinton G 89 L
1816 Monroe J 183 W
King R 34 L
1820 Monroe J 231 W
Adams J Q 1 L
1824 Adams J Q 84 W
Jackson A 99 L
Crawford W H 41 L
Clay H 37 L
1828 Jackson A 178 W
Adams J 83 L
1832 Jackson A 219 W
Clay H 49 L
Floyd J 11 L
Wirt W 7 L
1836 Van Buren M 170 W
Harrison W H 73 L
White H L 26 L
Webster D 14 L
Mangum W P 11 L

NIII / Radboud University of Nijmegen (the Netherlands)

96

Reader on SQL (Structured Query Language)

1840 Harrison W H 234 W
Van Buren M 60 L
1844 Polk J K 170 W
Clay H 105 L
1848 Taylor Z 163 W
Cass L 127 L
1852 Pierce F 254 W
Scott W 42 L
1856 Buchanan J 174 W
FremontJ C 114 L
Fillmore M 8 L
1860 Lincoln A 180 W
Breckinridge J 72 L
Bell J 39 L
Douglas S 12 L
1864 Lincoln A 212 W
McClellan G B 21 L
1868 GrantU S 214 W
Seymour 80 L
1872 GrantU S 286 W
Hendricks T A 42 L
Brown B G 18 L
Jenkins C J 2 L
Davis D 1 L
1876 Hayes RB 185 Wi
Tilden S J 184 L
1880 Garfield J A 214 W
Hancock W S 155 L
1884 Cleveland G 219 W
Blaine J G 182 L
1888 Harrison B 233 W
Cleveland G 168 L
1892 Cleveland G 277 W
Harrison B 145 L
Weaver J B 22 L
1896 McKinley W 271 W
Bryan W J 176 L
1900 McKinley W 292 W
Bryan W J 155 L
1904 Roosevelt T 336 W
Parker A B 140 L
1908 Taft WH 321 W
Bryan W J 162 L
1912 Wilson W 435 Wi
Roosevelt T 88 L
Taft WH 8 L
1916 Wilson W 277 W
Hughes C E 254 L
1920 Harding W G 404 W
Cox WW 127 L
1924 Coolidge C 382 W
Davis J W 136 L
La Follette R M 13 L
1928 Hoover H C 444 W
Smith AE 87 L
1932 Roosevelt F D 472 W
Hoover H C 59 L
1936 Roosevelt F D 523 W
Landon A M 8 L
1940 Roosevelt F D 449 W
Wilkie W L 82 L
1944 Roosevelt F D 432 W
Dewey TE 99 L
1948 Truman H S 303 W

NIII / Radboud University of Nijmegen (the Netherlands)

97

Reader on SQL (Structured Query Language)

1948 Dewey T E 189 L
Thurmond J S 39 L
1952 Eisenhower D D 442 W
Stevenson A 89 L
1956 Eisenhower D D 457 W
Stevenson A 73 L
Jones W B 1 L
1960 Kennedy J F 303 Wi
Nixon R M 219 L
Byrd 15 L
1964 Johnson L B 486 W
Goldwater B 52 L
1968 Nixon R M 301 W
Humphrey H H 191 L
Wallace G C 46 L
1972 Nixon R M 520 W
McGovern G S 17 L
Hospers J 1 L
1976 Carter J E 297 W
Ford GR 240 L
1980 Reagan R 489 W
Carter J 49 L
NIII / Radboud University of Nijmegen (the Netherlands) 98

