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A better definition

* assign probabilities to subsets of O
In a systematic way

* A o-algebra Ais a set of subsets:

—QeA
—-Ac A2>20\Ae A

—A.e Aforalli=1,2,... 2 'U1 A.e A

| =

* Generally: It is sensible to assign a probability
to each set in the o-algebra.



Example: Borel-c-algebra

Q=R

‘B = the smallest o-algebra
that contains all intervals [r,s), forr,s e R

standard o-algebra for the real numbers

Emile Borel, French mathematician, Mg
1871-1956, wrote Le Hasard




Measure space

* A measure is a function u: A 2 [0,o°]
with the properties:
-ud)=0

— o-additivity: if A, e Afor all i=1,2,... are pairwise
disjoint sets, then

uU A) =2 uA)
A measure space is a triple (Q, A4,u)

where ‘A is a o-algebra over Q
and n: A 2 [0,o] is a measure.



Finally: Probability space

* A probability measure is a measure y with:
u(Q) =1

* A probability space is a measure space
(Q,A,P) where P is a probability measure.



Example

* A process takes between 2 and 5 minutes ...

e Qutcomes: Q=12,5]
e o-algebra: ‘B restrained to Q
* measure: u([r,s1) = u(lr,s)) = (s—r)/3

* For example:

u([2,5]) =1 u([2,3)) =7%
u([2,3) u [4,5)) =%



A little measure theory

e A function defined on a suitable subset of /A
can be extended uniquely to a measure on .

* needed to define probability space
of Markov chains



Ring

 Aring R is a set of subsets of Q:
—geR
—ALAeRD2A\NA R
—A,A,e R2>A UA,eR



Premeasure

* A premeasure is a function p: R =2 [0,o°]
with the properties:
- ) =0
— o-additivity: if A, € Rfor all i=1,2,... are pairwise
disjoint sets, then
uU A) =2 uA)



Outer measure

* For every premeasure g on aring R,
there is at least one measure on o(R)

that extends L.
* Prove using outer measure u* (Carathéodory):

— U(Q) := all sequences of sets € Rthat cover Qc Q
—p*(Q) :==inf{Z P-(Ai) | (Ai)ieN e U(Q) }

- A*={AcQ | u*Q) zp*(Q N A) + p*(Q\ A)
forallQcQ}
is a o-algebra o R.

— W* is a measure on A*,



Uniqueness of extension

* |f £ generates a o-algebra A and
— Fis n-stable (i.e.E,, E, € E> E, N E, € E)
— there exists a sequence (E),_y in Ewith UE,=Q

* then any two measures that coincide on £
and are finite on (E)),_y are equal.



Recapitulation

Q is a set of possible outcomes
of a random experiment.

A subset A € Q has probability P(A), i. e.,
the probability that the random experiment
results in some outcome € A is P(A).

The o-algebra A c P(Q) describes
to which sets such a probability can be assigned.

Because P is a measure,
the probabilities assighed to different subsets of Q
are consistent with each other.



Further questions | will not answer

* How do you find the right probability values?

— | assume that the values are given;
we do the calculations based on the givens

 What is a probability?
— frequentist model? model of bets?

 Why should probability spaces be additive?

— other choices will lead
to a surely-winning scheme of bets

—_

http://info.phys.unm.edu/~caves/reports/dutchbook.pdf



Discrete-time Markov chains

David N. Jansen






States




Transitions




Transition Probabilities




Markov Chain




Formal definition

e A Markov chain consists of:

)
—P:SxS->[0,1]

— 1, S 2 [0,1]

finite set of states
(often S={1, 2, ... n})

transition probability matrix
(with row sums = 1)

initial state distribution
(sometimes)



Semantics of a Markov Chain

* similar to Kripke structure:

— system starts in one of the initial states,
chosen according to i,

— system is always in a state
— from time to time, a transition is taken

— when the system leaves state J,
the next state is j with probability P(i,j)



Semantics of a Markov Chain

* What is “from time to time”?
Two interpretations:

— we do not measure / we consider uninteresting
how long the time between transitions is

— all times between transitions are equal



Some general properties

of Markov chains

* “Markov” property
 Chapman—Kolmogorov equations



Example: Gambler’s ruin

* a gambler plays a game repeatedly

* each time,
he either wins €1 (with probability p)
or he loses €1 (with probability 1-p)

* gambler plays until he is bankrupt

e Draw this Markov chain!



Cylinder Set of a Markov Chain




Probability Space

of a Markov Chain

O all paths

 F o-algebra generated by cylinder sets
— Cyl(sy, 4, ---, S,) := paths starting with s, s, ..., s,
— complements and unions of cylinder sets

* L unique extension of

W(CYI(Sgs S1s +s Sp))
= T,(Sg) P(Sp,51) P(5,S5,) " P(S,_1,S,)



Analysis of a Markov chain

* Interesting measures:

— transient state distribution:

What is the probability to be in state i
after t transitions?

Notation: p,(t) and 1, = (p,(t), p,(t), ..., p,(t))
— steady-state distribution:

What is the probability to be in state i

in equilibrium / after a long time (t 2 o<)?

Notation: p. and = (p,, p,, ..., P,)




transient state distribution

* Given:
— initial distribution
— transition probabilities P = P(1)
* Requested:
— transient probabilities i, = (p,(t), p,(t), ..., p,(t))

* Calculate: m,=m,P(t)=rm,P’



Example:
Weather on the Island of Hope

Each day, the weather is classified as sunny, cloudy or rainy.
Tomorrow’s weather forecast is, depending on today:

* If the present day is sunny, then the next day will be
— sunny with probability 0.7
— cloudy with probability 0.1
— rainy with probability 0.2
* If the present day is cloudy, the values are 0.5, 0.25 and 0.25.
* If the present day is rainy, the values are 0.4, 0.3 and 0.3.

Can you give a multi-day weather forecast?



steady-state distribution

* Given:

— initial distribution

— transition probabilities P = P(1)
* Requested:

— steady-state distribution 1



some properties of Markov chains

A Markov chainis irreducible if every state
is reachable from every other state.

e A state s of a Markov chain is periodic
with period k if any return to s
occurs in some multiple of k steps.

«<® <o

* A Markov chain is aperiodic
if all its states have period 1.



steady-state distribution

Theorem: If a finite Markov chain is irreducible
and aperiodic, it has a steady-state distribution

that does not depend on the initial distri

 What if MC is reducible?
- need to find irreducible parts
and probability to reach them
 What if MC is periodic?
- no steady-state distribution at all

oution.



Proof of Theorem

e There exists an invariant distribution:
— The row sums of P are all 1.

— The column vector (1, ..., 1)"is a right eigenvector
for eigenvalue 1: P-(1, ..., 1)"=(1, ..., 1)7

— Therefore there exists a left eigenvector i for
eigenvalue l,i.e.mt:P=mn

— Now choose a it that sums to 1;
this is an invariant distribution.



Proof of Theorem

* ltisindependent from initial state:
[Norris: Markov chains. Thm. 1.8.3]

— Assume there are two Markov chains X, Y
with the same transition matrix but different initial states

— combine the chains: W :=XxY

— Pick a fixed state b.
W will visit (b,b) in finite time with probability 1.

— Z :=the behaviour of X until W first visits (b,b) and the
behaviour of Y afterwards

— Z has same transition matrix + initial state as X
and same steady-state distribution as Y



steady-state distribution

* Given:
— MCis irreducible and aperiodic
— initial distribution
— transition probabilities P = P(1)
* Requested:
— steady-state distribution 1t

 Calculate: n=T1P
2 1i(s) =1

SES



Long-term weather means
on the Island of Hope

 Weather model on the Island of Hope is
finite, aperiodic and irreducible.
So steady-state distribution exists!

* This distribution shows
the long-term weather means.

e Calculate it!



Example: Google PageRank

Model the WWW as a Markov chain as follows:
 Each webpage is a state of the MC.

* Each hyperlink is a transition.
In each state, the hyperlinks from that state
have the same probability.

The steady-state probability of a state
corresponds to its PageRank.



Recapitulation

 Markov chains describe
the behaviour of discrete-state systems.

* Discrete-time Markov chains
count the number of steps,
but not how long a step takes.

* Transient state and steady-state analysis
serve to calculate state probabilities.



