Quantitative Logics

David N. Jansen

Probability theory revisited

David N. Jansen

A better definition

- assign probabilities to subsets of Ω in a systematic way
- A σ -algebra \mathcal{A} is a set of subsets:
 - $-\Omega \in \mathcal{A}$
 - $-A \in \mathcal{A} \rightarrow \Omega \backslash A \in \mathcal{A}$
 - $-A_i \in \mathcal{A}$ for all $i = 1, 2, ... \rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$
- Generally: It is sensible to assign a probability to each set in the σ -algebra.

Example: Borel-σ-algebra

- $\Omega = \mathbb{R}$
- \mathcal{B} = the smallest σ -algebra that contains all intervals [r,s), for $r,s \in \mathbb{R}$

- standard σ -algebra for the real numbers
- Émile Borel, French mathematician, 1871–1956, wrote Le Hasard

Measure space

- A measure is a function $\mu: \mathcal{A} \to [0, \infty]$ with the properties:
 - $-\mu(\varnothing)=0$
 - σ-additivity: if $A_i ∈ \mathcal{A}$ for all i=1,2,... are pairwise disjoint sets, then $\mu(\cup A_i) = \Sigma \mu(A_i)$
- A measure space is a triple $(\Omega, \mathcal{A}, \mu)$ where \mathcal{A} is a σ -algebra over Ω and $\mu: \mathcal{A} \rightarrow [0, \infty]$ is a measure.

Finally: Probability space

• A probability measure is a measure μ with: $\mu(\Omega) = 1$

often written as P

• A probability space is a measure space (Ω, \mathcal{A}, P) where P is a probability measure.

Example

- A process takes between 2 and 5 minutes ...
- Outcomes: $\Omega = [2,5]$
- σ -algebra: \mathcal{B} restrained to Ω
- measure: $\mu([r,s]) = \mu([r,s)) = (s-r)/3$
- For example:

$$\mu([2,5]) = 1$$
 $\mu([2,3)) = \frac{1}{3}$ $\mu([2,3)) = \frac{2}{3}$

A little measure theory

• A function defined on a suitable subset of \mathcal{A} can be extended uniquely to a measure on \mathcal{A} .

 needed to define probability space of Markov chains

Ring

- A ring \mathcal{R} is a set of subsets of Ω :
 - $-\varnothing\in\mathcal{R}$
 - $-A_1, A_2 \in \mathcal{R} \rightarrow A_1 \setminus A_2 \in \mathcal{R}$
 - $-A_1, A_2 \in \mathcal{R} \rightarrow A_1 \cup A_2 \in \mathcal{R}$

Premeasure

• A premeasure is a function $\mu: \mathcal{R} \to [0, \infty]$ with the properties:

$$-\mu(\varnothing)=0$$

– σ-additivity: if $A_i \in \mathcal{R}$ for all i=1,2,... are pairwise disjoint sets, then

$$\mu(\cup A_i) = \Sigma \mu(A_i)$$

Outer measure

- For every premeasure μ on a ring \mathcal{R} , there is at least one measure on $\sigma(\mathcal{R})$ that extends μ .
- Prove using outer measure μ* (Carathéodory):
 - U(Q) := all sequences of sets ∈ R that cover $Q \subseteq Ω$
 - $-\mu^*(Q) := \inf \{ \Sigma \mu(A_i) \mid (A_i)_{i \in \mathbb{N}} \in \mathcal{U}(Q) \}$
 - $-\mathcal{A}^* := \{ A \subseteq \Omega \mid \mu^*(Q) \ge \mu^*(Q \cap A) + \mu^*(Q \setminus A)$ for all $Q \subseteq \Omega \}$
 - is a σ -algebra $\supseteq \mathcal{R}$.
 - $-\mu^*$ is a measure on \mathcal{A}^* .

Uniqueness of extension

- If $\mathcal E$ generates a σ -algebra $\mathcal A$ and
 - \mathcal{E} is ∩-stable (i. e. E_1 , $E_2 \in \mathcal{E} \rightarrow E_1 \cap E_2 \in \mathcal{E}$)
 - there exists a sequence $(E_i)_{i\in\mathbb{N}}$ in \mathcal{E} with $\cup E_i = \Omega$
- then any two measures that coincide on \mathcal{E} and are finite on $(E_i)_{i\in\mathbb{N}}$ are equal.

Recapitulation

- Ω is a set of possible outcomes of a random experiment.
- A subset $A \subseteq \Omega$ has probability P(A), i. e., the probability that the random experiment results in some outcome $\in A$ is P(A).
- The σ -algebra $\mathcal{A} \subseteq \mathbf{P}(\Omega)$ describes to which sets such a probability can be assigned.
- Because P is a measure, the probabilities assigned to different subsets of Ω are consistent with each other.

Further questions I will not answer

- How do you find the right probability values?
 - I assume that the values are given;
 we do the calculations based on the givens
- What is a probability?
 - frequentist model? model of bets?
- Why should probability spaces be additive?
 - other choices will lead
 to a surely-winning scheme of bets

http://www.numdam.org/item?id=AIHP_1937__7_1_1_0, page 7 http://info.phys.unm.edu/~caves/reports/dutchbook.pdf

Discrete-time Markov chains

David N. Jansen

States

Transitions

Transition Probabilities

Markov Chain

Formal definition

A Markov chain consists of:

```
-S \qquad \qquad \text{finite set of states} \\ (\text{often } S = \{1, 2, ... n\}) \\ -\mathbf{P} : S \times S \rightarrow [0,1] \qquad \text{transition probability matrix} \\ (\text{with row sums} = 1) \\ -\pi_0 : S \rightarrow [0,1] \qquad \text{initial state distribution} \\ (\text{sometimes})
```

Semantics of a Markov Chain

- similar to Kripke structure:
 - system starts in one of the initial states, chosen according to π_0
 - system is always in a state
 - from time to time, a transition is taken
 - when the system leaves state i, the next state is j with probability P(i,j)

Semantics of a Markov Chain

- What is "from time to time"?
 Two interpretations:
 - we do not measure / we consider uninteresting how long the time between transitions is
 - all times between transitions are equal

Some general properties of Markov chains

- "Markov" property
- Chapman–Kolmogorov equations

Example: Gambler's ruin

- a gambler plays a game repeatedly
- each time,
 he either wins €1 (with probability p)
 or he loses €1 (with probability 1-p)
- gambler plays until he is bankrupt

Draw this Markov chain!

Cylinder Set of a Markov Chain

Probability Space of a Markov Chain

- Ω all paths
- \mathcal{F} σ -algebra generated by cylinder sets
 - $-Cyl(s_0, s_1, ..., s_n) := paths starting with <math>s_0, s_1, ..., s_n$
 - complements and unions of cylinder sets
- \bullet μ unique extension of

$$\mu(Cyl(s_0, s_1, ..., s_n))$$
= $\pi_0(s_0) \cdot \mathbf{P}(s_0, s_1) \cdot \mathbf{P}(s_1, s_2) \cdots \mathbf{P}(s_{n-1}, s_n)$

Analysis of a Markov chain

- Interesting measures:
 - transient state distribution: What is the probability to be in state iafter t transitions? Notation: $p_i(t)$ and $\pi_t = (p_1(t), p_2(t), ..., p_n(t))$
 - steady-state distribution: What is the probability to be in state i in equilibrium / after a long time (t $\rightarrow \infty$)? Notation: p_s and $\pi = (p_1, p_2, ..., p_n)$

transient state distribution

- Given:
 - initial distribution π_0
 - transition probabilities P = P(1)
- Requested:
 - transient probabilities $\pi_t = (p_1(t), p_2(t), ..., p_n(t))$
- Calculate: $\pi_t = \pi_0 \cdot \mathbf{P}(t) = \pi_0 \cdot \mathbf{P}^t$

Example: Weather on the Island of Hope

Each day, the weather is classified as sunny, cloudy or rainy. Tomorrow's weather forecast is, depending on today:

- If the present day is sunny, then the next day will be
 - sunny with probability 0.7
 - cloudy with probability 0.1
 - rainy with probability 0.2
- If the present day is cloudy, the values are 0.5, 0.25 and 0.25.
- If the present day is rainy, the values are 0.4, 0.3 and 0.3.

Can you give a multi-day weather forecast?

steady-state distribution

- Given:
 - initial distribution π_0
 - transition probabilities P = P(1)
- Requested:
 - steady-state distribution π

some properties of Markov chains

- A Markov chain is irreducible if every state is reachable from every other state.
- A state s of a Markov chain is periodic with period k if any return to s occurs in some multiple of k steps.

• A Markov chain is aperiodic if all its states have period 1.

steady-state distribution

Theorem: If a finite Markov chain is irreducible and aperiodic, it has a steady-state distribution that does not depend on the initial distribution.

- What if MC is reducible?
 - need to find irreducible parts and probability to reach them
- What if MC is periodic?
 - → no steady-state distribution at all

Proof of Theorem

- There exists an invariant distribution:
 - The row sums of P are all 1.
 - The column vector $(1, ..., 1)^T$ is a right eigenvector for eigenvalue 1: $\mathbf{P} \cdot (1, ..., 1)^T = (1, ..., 1)^T$
 - Therefore there exists a left eigenvector π for eigenvalue 1, i. e. $\pi \cdot \mathbf{P} = \pi$
 - Now choose a π that sums to 1; this is an invariant distribution.

Proof of Theorem

It is independent from initial state:

[Norris: Markov chains. Thm. 1.8.3]

- Assume there are two Markov chains X, Y
 with the same transition matrix but different initial states
- combine the chains: W := X x Y
- Pick a fixed state b.
 W will visit (b,b) in finite time with probability 1 .
- Z := the behaviour of X until W first visits (b,b) and the behaviour of Y afterwards
- Z has same transition matrix + initial state as X and same steady-state distribution as Y

steady-state distribution

- Given:
 - MC is irreducible and aperiodic
 - initial distribution π_0
 - transition probabilities P = P(1)
- Requested:
 - steady-state distribution π
- Calculate: $\pi = \pi \cdot \mathbf{P}$ $\sum_{s \in S} \pi(s) = 1$

Long-term weather means on the Island of Hope

- Weather model on the Island of Hope is finite, aperiodic and irreducible.
 So steady-state distribution exists!
- This distribution shows the long-term weather means.

Calculate it!

Example: Google PageRank

Model the WWW as a Markov chain as follows:

- Each webpage is a state of the MC.
- Each hyperlink is a transition.
 In each state, the hyperlinks from that state have the same probability.

The steady-state probability of a state corresponds to its PageRank.

Recapitulation

- Markov chains describe the behaviour of discrete-state systems.
- Discrete-time Markov chains count the number of steps, but not how long a step takes.
- Transient state and steady-state analysis serve to calculate state probabilities.