Model checking PCTL on MDPs

David N. Jansen

Let's play a better game

Recapitulation

- Markov decision processes combine nondeterministic and probabilistic choices.
- Strategies select how to resolve nondeterministic choices.
- MDP + strategy induce a Markov chain.
- Probabilities on a MDP are defined via the induced Markov chain.

Formal definition

A Markov decision process consists of:

```
– S finite set of states
```

(often
$$S = \{1, 2, ... n\}$$
)

$$-\mathbf{P}: S \times Act \times S \rightarrow [0,1]$$

transition probability matrix for every action

 $-L: S \rightarrow 2^{AP}$ labelling with atomic propositions

Probabilistic CTL

- a logic to describe properties of Markov chains and MDPs
- extends CTL
- strictly speaking, not a quantitative logic (truth values are Boolean: true or false)

PCTL syntax for MDPs

state formulas φ, ψ

```
a atomic proposition
```

$$- \neg \phi$$
 negation

$$-\phi \lor \psi$$
 disjunction

$$P_{\leq \rho}$$
(ΕΠ), $P_{\geq \rho}$ (ΕΠ), $P_{\leq \rho}$ (ΑΠ), $P_{\geq \rho}$ (ΑΠ),... probabilistic operator

path formulas Π

$$- \varphi U \psi$$
 unbounded until

$$- \varphi U^{\leq k} \psi$$
 bounded until

What strategy to choose?

- the best strategy: highest probability to win
- the worst strategy: lowest probability to win

add operators A, E similar to CTL

A = for all strategies

E = for some strategy

often simplified to: implicitly A only

Model checking PCTL for MDPs

- find strategy and probabilities at the same time
- three methods:
 - value iteration (similar to Υ)
 - linear programming (inequality system)
 - policy iteration
 (pick a random action and then improve)

What strategy is needed?

- history-dependent strategy? simpler strategy?
- unbounded until: history-independent
- bounded until: step-dependent
- Proofs on the following slides...

Today's programme

- algorithm for model checking
 - general: bottom-up
 - bounded until (needs a step-dependent scheduler)
 - unbounded until (history-independent scheduler)
- examples

Model checking PCTL formulas

set of states that satisfy φ

Calculate Sat(φ) from subformulas:

- Sat(a) = { $s \in S \mid a \in L(s)$ }
- Sat($\neg \phi$) = $S \setminus Sat(\phi)$
- $Sat(\phi \lor \psi) = Sat(\phi) \cup Sat(\psi)$
- Sat($\mathbf{P}_{\geq p}(\mathsf{A}\Pi)$) = { $s \mid \inf_{n \in strat} \mathsf{Prob}^{\eta}_{s} \{ \sigma \mid \sigma \vDash \Pi \} \geq p \}$
- Sat($\mathbf{P}_{\geq p}(\mathsf{E}\Pi)$) = { $s \mid \sup_{n \in strat} \mathsf{Prob}^{\eta}_{s} \{ \sigma \mid \sigma \vDash \Pi \} \geq p \}$
- Sat($\mathbf{P}_{\leq p}(\mathsf{A}\Pi)$) = { $s \mid \sup_{\eta \in strat} \mathsf{Prob}^{\eta}_{s} \{ \sigma \mid \sigma \vDash \Pi \} \leq p \}$
- Sat($\mathbf{P}_{\leq p}(\mathsf{E}\Pi)$) = { $s \mid \inf_{\eta \in strat} \mathsf{Prob}^{\eta}_{s} \{ \sigma \mid \sigma \vDash \Pi \} \leq p \}$

notatie voor schedulers...

- griekse letter, bv. η
- Frakturletter, bv. \mathfrak{A} , \mathfrak{S}

Path formula: X (next)

$$\sup_{\eta \in strat} \mathsf{Prob}^{\eta}_{s} \{ \sigma \mid \sigma \vDash \mathsf{X} \varphi \}$$

=
$$\max_{\alpha \in Act} \mathbf{P}(s, \alpha, \operatorname{Sat}(\Phi))$$

$$= \max_{\alpha \in Act} \sum_{t \in Sat(\phi)} P(s, \alpha, t)$$

Path formula: U^{≤n} (bounded until)

- $\phi U^{\leq k} \psi$
- Find

- Sat(ψ)
- $-S_1 = \text{winning states} S \setminus \text{Sat}(\phi) \setminus \text{Sat}(\psi)$
- $-S_0$ = losing states (may add stalemate states)
- $-S_{2}$ = other states (including announce checkmate)

Which strategy to choose?

Step-bounded strategies

- A step-bounded strategy bases its decision on:
 - current state
 - number of steps taken until now
 - no more information on past states!

 Theorem: Step-bounded strategies suffice to find the best strategy for bounded until.

(Proof idea: number of steps that remain before deadline is the only relevant data.)

Proof: step-bounded strategies suffice

- proof by induction on number of remaining steps
 - base case: 0 steps remain.
 No transition allowed → class of scheduler of no influence
 - induction step: Assume given strategies η_s for each state s that are optimal for φ U^{$\leq n$} ψ . To find an optimal strategy from s_0 for φ U^{$\leq n+1$} ψ , choose an action that leads to the highest probability under η_s .

Bounded reachability

- Assume $S_1 = Sat(\psi)$ (no announce checkmate)
- $x_n(s) := \text{maximal probability of } (\phi \cup^{\leq n} \psi),$ if s is the start state

•
$$x_0(S_1) = 1$$
 $x_0(S_0 \cup S_2) = 0$

•
$$x_{n+1}(S_1) = 1$$
 $x_{n+1}(S_0) = 0$

$$x_{n+1}(s) = \max_{\alpha \in Act} \sum_{t \in S} \mathbf{P}(s,\alpha,t) \cdot x_n(t)$$
 for $s \in S_?$

The example also shows

The example also shows

that simple strategies

do not suffice! ample

Which states satisfy $P_{>1/4}(a \text{ EU}^{\leq 3} b)$?

Path formula: U (unbounded until)

- φ U ψ
- Find
 - $-S_1$ = winning and announce checkmate states
 - $-S_0$ = losing and stalemate states
 - $-S_{2}$ = other states

Which strategy to choose?

An equation system...

• $x(s) := \text{maximal probability of } (\phi \cup \psi),$ if s is the start state, under a *simple* strategy

•
$$x(S_1) = 1$$
 $x(S_0) = 0$

$$x(s) = \max_{\alpha \in Act} \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x(t)$$
 for $s \in S_{?}$

...but what about other strategies?

• Assume $y(s) := \text{maximal probability of } (\phi \cup \psi),$ if s is the start state, under any strategy

- y(s) must be a solution of this equation system!
- uniqueness of solution $\rightarrow x = y$

Value iteration + convergence test

• $x_n(s)$:= lower bound on maximal prob of ($\varphi \cup \psi$), $x^n(s)$:= upper bound on maximal prob of ($\varphi \cup \psi$), if s is the start state

•
$$x_0(S_1) = x^0(S_1 \cup S_2) = 1$$
, $x_0(S_0 \cup S_2) = x^0(S_0) = 0$

•
$$x_{n+1}(S_1) = x^{n+1}(S_1) = 1$$
, $x_{n+1}(S_0) = x^{n+1}(S_0) = 0$

$$x_{n+1}(s) = \max_{\alpha \in Act} \sum_{t \in S} \mathbf{P}(s,\alpha,t) \cdot x_n(t)$$
 for $s \in S_?$

$$x^{n+1}(s) = \max_{\alpha \in Act} \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x^{n}(t) \quad \text{for } s \in S_{?}$$

Policy iteration

- Start with a random strategy ζ_0
- Calculate $x_{\zeta_0}(s) := Prob^{\zeta_0}_{s}(\phi \cup \psi)$
- For each state, find the optimal action if the other states use ζ_n :

$$\zeta_{n+1}(s) = \arg\max_{\alpha \in Act} \sum_{t \in S} \mathbf{P}(s,\alpha,t) \cdot x_{\zeta_n}(t)$$

Example

Which states satisfy $P_{\leq 1/2}$ (a AU b)?

Some slides have been corrected based on remarks made by Remy Viehoff.