Model checking PCTL on MDPs



Let’s play a better game




Recapitulation

Markov decision processes combine
nondeterministic and probabilistic choices.

Strategies select how to resolve
nondeterministic choices.

MDP + strategy induce a Markov chain.

Probabilities on a MDP are defined
via the induced Markov chain.



Formal definition

* A Markov decision process consists of:

-5 finite set of states
(oftenS={1, 2, ... n})
— Act finite set of actions

—P:SxActxS > [0,1]
transition probability matrix
for every action

—L[:S > 24° labelling with atomic propositions



Probabilistic CTL

* alogic to describe properties
of Markov chains and MDPs

e extends CTL

 strictly speaking, not a quantitative logic
(truth values are Boolean: true or false)



PCTL syntax for MDPs

* state formulas ¢, Y

—da atomic proposition
—~0 negation
—@Vvy disjunction

- P_,(EM), P, (EM), P_,(AM), P, (AN),...
probabilistic operator
* path formulas N
- X next state
—pUyY unbounded until
— @ Usky bounded until



What strategy to choose?

the best strategy: highest probability to win
the worst strategy: lowest probability to win

add operators A, E similar to CTL
A = for all strategies
E = for some strategy

often simplified to: implicitly A only



Model checking PCTL for MDPs

* find strategy and probabilities
at the same time

* three methods:
— value iteration (similar to Y)
— linear programming (inequality system)

— policy iteration
(pick a random action and then improve)



What strategy is needed?

history-dependent strategy? simpler strategy?
unbounded until: history-independent

bounded until: step-dependent

Proofs on the following slides...



Today’s programme

* algorithm for model checking
— general: bottom-up

— bounded until
(needs a step-dependent scheduler)

— unbounded until (history-independent scheduler)

e examples



Model checking PCTL formulas

Calculate Sat(¢d) from subformulas:

Sat(a)={s& S| a&€ L(s)}
Sat(-¢) = S \ Sat(¢)
Sat(¢pvy) = Sat(ep) U Sat(y)

Sat(P,,(AN)) = {s | inf ;. Prob’{o | o=} 2 p}
Sat(P,,(EM)) = {s | sup,csyq: Prob’{o | o =M} 2 p}
Sat(P_,(AN)) = {s | sup,egq: Prob’do | o =M} < p}
Sat(P_,(EM)) = {s | inf Prob" {c | o =N} < p}

n&strat



notatie voor schedulers...

* griekse letter, bv. n
* Frakturletter, bv. 2 S



Path formula: X (next)
SUP,csrqr ProbT{o | o= Xd}

=max, <, P(s, &, Sat(d))

= MaX, c 4 z P(s, a, t)
t € Sat(¢p)



Path formula: U*" (bounded until)

* @ UFY
* Find
— 5, = winning states
— S, = losing states (may add stalemate states)
— S, = other states (including announce checkmate)

* Which strategy to choose?



Step-bounded strategies

* A step-bounded strategy bases its decision on:
— current state
— number of steps taken until now

— no more information on past states!

* Theorem: Step-bounded strategies suffice
to find the best strategy for bounded until.

(Proof idea: number of steps that remain before deadline
is the only relevant data.)



Proof:
step-bounded strategies suffice

e proof by induction on number of remaining
steps
— base case: 0 steps remain.
No transition allowed =2 class of scheduler of no
influence

— induction step: Assume given strategies n. for
each state s that are optimal for ¢ U=" .
To find an optimal strategy from s, for ¢ Us"*1 {,

choose an action
that leads to the highest probability under n..



Bounded reachability

Assume S, = Sat(d) (no announce checkmate)

X,(s) := maximal probability of (¢ U=" W),
if s is the start state

* X,(5,) =1 Xo(So US,) =0
* Xpa(Sp) =1 Xpi1(S0) = 0

X,.,(S) = max z P(s,a,t) - x (t) forse s,
aEACt =g



B

®

® {a} W ¢

Which states satisfy P_,,(a EU3 b) ?



Path formula: U (unbounded until)

*eUY
* Find
— S, = winning and announce checkmate states

— S, = losing and stalemate states
— S, = other states

* Which strategy to choose?



An equation system...

* x(s) := maximal probability of (¢ U ),
if s is the start state, under a simple strategy

* x(5;) =1 x(S,) =0

x(s) = max z P(s,a,t) - x(t) forse s,
aCAct =g



...but what about other strategies?

* Assume
y(s) := maximal probability of (¢p U ),
if s is the start state, under any strategy

* y(s) must be a solution of this equation
system!

* uniqueness of solution 2 x=y



Value iteration + convergence test

x,(s) := lower bound on maximal prob of (¢ U V),
x"(s) := upper bound on maximal prob of (¢ U ),
if s is the start state

Xo(S1) = XS, US) =1,  x,(S,US,) =x%S,) =0
X,.1(5;) =x"(S,) =1, X,.1(So) = x"1(Sy) =0

X ..(s)=ma P(s,a,t) - x (t fors& S
n+1( ) aEAc)lS tés ( ) n() ?

x™1(s) = max ) P(s,a,t)-x"(t)  fors€ES,
aCAct =g '



Policy iteration

* Start with a random strategy ¢,
* Calculate x, (s) := Prob% (¢ U )

* For each state, find the optimal action
if the other states use

..,(s) = arg max z P(s,a,t) - x, (t)
aEACt = M



Example

DN —

®© {a} @ 0

Which states satisfy P_,, (a AU b) ?



Some slides have been corrected
based on remarks made by Remy Viehoff.



