CTMCs

Quantitative Logics
17 April 2013
David N. Jansen

Transient state distribution

- Given initial distribution π_0 , what is the probability distribution π_t over the states at time t?
- Differentiate $\pi_t = \pi_0 P(t)$:
- $\pi_t' = \pi_0 P'(t) = \pi_0 P(t) Q = \pi_t Q$
- Differential equation with solution:

$$\pi_t = \pi_0 e^{\mathbf{Q}t} = \pi_0 \sum_{i=0,...,\infty} (\mathbf{Q}t)^i / i!$$

Steady-state distribution

- In steady-state, the distribution does not change any more, i.e. $\pi' = 0$
- but $\pi' = \pi \mathbf{Q}$

• Solve equation system: $0 = \pi \mathbf{Q}$ (and $\Sigma_s \pi(s) = 1$)

How to calculate the exponential of a matrix

• $\pi_t = e^{\mathbf{Q}t} = \Sigma_{i=0...\infty} (\mathbf{Q}t)^i / i!$ is numerically unstable

transform sum using uniformisation!

Uniform DTMC of a CTMC

- Exit rate of a state := sum of all rates
- A CTMC is uniform if every state has the same exit rate.
- If a CTMC is uniform, the probability to get a certain number of transitions does not depend on the states visited.

Uniform DTMC of a CTMC

- Split CTMC into two parts:
 - timing: state sojourn times have cdf $F_F(t) = 1 e^{-Et}$
 - states visited: probability of transitions is described by DTMC with $\mathbf{P} := \mathbf{R} / E = \mathbf{Q} / E + \mathbf{I}$

• A non-uniform CTMC can be uniformised (without changing π_t) by adding self-loops.

How to calculate the exponential of a uniform CTMC matrix

• Let P := Q / E + I, so Q = E(P - I) where E = the maximum exit rate

```
• \pi_0 e^{\mathbf{Q}t}

= \pi_0 \Sigma_{i=0...\infty} (\mathbf{Q}t)^i / i!

= \pi_0 \Sigma_{i=0...\infty} (E[\mathbf{P} - \mathbf{I}]t)^i / i!

= \pi_0 \Sigma_{i=0...\infty} \Sigma_{j=0...i} (E\mathbf{P}t)^j (-E\mathbf{I}t)^{i-j} i! / [j! (i-j)!] / i!

= \pi_0 \Sigma_{j=0...\infty} (E\mathbf{P}t)^j / j! \times \Sigma_{i=j...\infty} (-Et)^{i-j} / (i-j)!

= \pi_0 \Sigma_{j=0...\infty} \mathbf{P}^j (Et)^j / j! \times e^{-Et}
```

How many transitions are taken?

Poisson distribution:

$$poi(i)$$
 = Prob(# of transitions in time $t = i$)
= e^{-Et} (Et) ^{i} / i !

• $\pi_0 e^{\mathbf{Q}t} = \pi_0 \Sigma_{j=0...\infty} \mathbf{P}^j poi(j)$

Poisson distribution

mean = $E \cdot t$ = 19,3

How to approximate the infinite sum

- # of transitions is most likely close to the mean
- Approximate poi(i) by probability under the condition that # of transitions ≈ mean
- Fox–Glynn algorithm finds required # of summands

Approximating this distribution

How to calculate $e^{\mathbf{Q}t}$

- 1 Uniformise the CTMC
- 2 Take the embedded DTMC
- 3 sum over the number of transitions, according to Fox–Glynn

CSL

state formulas φ, ψ

-a

atomic proposition

— ¬ф

negation

 $-\phi v\psi$

disjunction

 $-\mathbf{P}_{\leq p}(\Pi), \mathbf{P}_{\geq p}(\Pi)$

probabilistic operator

 $-\mathbf{S}_{\leq \rho}(\mathbf{\Phi}), \mathbf{S}_{\geq \rho}(\mathbf{\Phi})$

steady-state operator

path formulas Π

 $-X' \Phi$

next state

with time bound: an interval $I \subseteq \mathbb{R}_{\geq 0}$

 $- \varphi U' \psi$

until

Examples: Please translate to a formula

 Is the probability that the Hubble space telescope crashes within 10 years > 0.01?

 Is the probability that the NASA has to send two repair missions within 3 years ≤ 0.1?

Will the Hubble space telescope crash?

Semantics

- path formulas: similar to PCTL
- (time-bounded) next: X^{I} φ paths that take the first step within a time $\subseteq I$ and go to a φ -state
- (time-bounded) until: $\phi U' \psi$ paths that reach a ψ -state within a time in $\subseteq I$ and only pass via ϕ -states before

Measurability

- require that path sets be measurable
- definition of cylinder set for CTMC...
- path sets satisfying X' φ or φ U' ψ
 are unions of cylinder sets

Multiple until operator

• original definition included operator $\phi_1 U^{l_1} \phi_2 U^{l_2} ... U^{l_k} \phi_k$

[Aziz/Sanwal/Singhal/Brayton: Verifying continuous time Markov chains. In: CAV 1996. LNCS 1102.] (contains errors)

often reduced to k=2 only

[Baier/Haverkort/Hermanns/Katoen: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 2003.]

[Zhang/Jansen/Nielson/Hermanns: Efficient CSL model checking using stratification. Logical Methods Comp. Sci., 2012.]