

Syllabus

Requirements Engineering

2008-2009

Dr. Stijn Hoppenbrouwers

NIII

Radboud University Nijmegen

1. Introduction

This is version 3.1 of the syllabus (―dictaat‖) for the Requirements Engineering

course taught at the beginning of the second year of the BSc Information Science

(―Informatiekunde‖) curriculum at Radboud University Nijmegen. In the course we

also make intensive use of a textbook (―Use cases: requirements in context‖, by Kulak

and Guiney; for more info see the course website at

http://www.niii.ru.nl/~onderwijs/opleidingen/ - Cursussen op naam - Requirements

Engineering). I may also use other texts, all of which will be made available on the

website.

I draw, to some extent, on previous courses, notably ―Domeinmodelleren‖,

―Beweren & Bewijzen‖, and ―modelleren van organisaties‖. However, the course has

no officially set prequalifications.

This reader is a work in progress. It may be edited during the course, so make sure

you have the latest version available, especially when you study for the exam. For the

moment (and because my time is limited), I will only include teaching material

without providing much of a context.

Please note that you are required to read certain chapters of the Use Case book at

an early stage in the course, to prepare for the Case project. I will talk about the

contents of the book only relatively briefly, and from my own particular perspective.

You are expected to be thoroughly acquainted with the book's full contents. You

really need to digest chapters 1-6 before you start working on the Case Project. If you

do not read the book, that is your problem; I simply assume you do read it, and in time

1.1 Requirements Engineering: WHAT about it?

Simply put, Requirements Engineering (RE) is ―the Art and Science of gathering and

specifying what users and other relevant stakeholders demand and expect of a future

software system‖.

“Basic system development thinking revolves round three main types of

questions: WHY?, WHAT?, and HOW?”

It all begins when someone wants something to be supported or made possible, and

believes that creating some system will help achieve this. From the start, this includes

HOW (the technical details of a specific, concrete solution), WHAT (the more

abstract, essential functionality delivered by some system), and WHY (the problem or

situation that is to be solved or improved).

So, presenting it the other way round:

WHY boils down to ―what is the problem?‖ The problem could be, for example, ―I

hate that I cannot remember exactly where and when I traveled‖.

WHAT relates to something that solves the problem. For example, ―I could store

information bout my travels somewhere, in a way that allows me to look it up and get

to it later‖. More in detail, it could be, for example, ―to get a note block and pen and

make a log of my travels, or to buy a palm pilot and make a digital log, or even to hire

someone to follow you and keep records, so you can ask him later‖. Note that there

are usually some alternative solutions to a problem. In principle, even the finest detail

in a solution is included in the WHAT. However, in this course we stop at some point.

For example, details of interface (GUI) design are strictly speaking part of the

WHAT, but are not covered by what is generally understood to be RE.

Another, very useful way of looking at the WHAT involves a blackbox view: describe

what a system does (outside of the box: buttons to push and knobs to twist, or some

more high-level description, and the order in which to do this to achieve some

response), but not what the machinery inside the box looks like (the technical stuff

that ―makes it so‖).

HOW makes concrete by what means the functionality is delivered. The blackbox is

opened and we focus on what's happening inside. We cross into what is often called

implementation: creating a real system that makes the functionality happen. We need

to start programming, maybe buy or put together hardware, or even select actual

people to perform tasks, and eventually we even have to make the whole thing

operational (realization or deployment).

1.2
“Why-What-How2”

I like to think about RE in a similar way. Basically, for RE you can simply ask:

―WHY do we do it?‖. The answer might be: ―I hate that it often occurs that people

involved in a software project don't agree about what it is they want, and that they did

not consider it well enough beforehand, so people keep being disappointed or

unpleasantly surprised‖.

Once we know WHY, we can wonder WHAT exactly we want in RE, i.e. what we

want to change in order to solve the problem. The RE WHAT-question then can be

answered, for example, ―I want a clear and detailed description of the wishes and

needs of various stakeholders, documented in a certain way‖. In more detail, they

answer may tell you which sort of deliverables (documents) we want to end up with in

answering the WHAT question for the project.

The HOW question in RE can be answered in much detail, and in many ways. What

happens if you open the WHAT black box of RE and look under the hood? Which

processes, plans, techniques etc. are supposed to get us where we want to be, i.e. get

us the deliverables we want?

So put bluntly, RE is about the WHAT phase in system development (what will the

system have to do for us?). It does however also require insight in the WHY (What is

the problem we want to solve?), and often it also at the least involves an open eye for

the HOW (how can we build a solution, and is the system we want possible/affordable

at all?). In other words: RE is always, somehow, embedded in the larger context of

system development.

In chapter 1-3 of the textbook by Kulak & Guiney (I will refer to it as "[K&G]"), a

good overview is given of the WHY (briefly), the WHAT (a lot), and a specific

flavour of HOW of RE. Read the chapters and do it timely!

1.3 Some more about WHAT and HOW, and about genies and
gnomes

Keeping apart (thinking about) WHY and WHAT and HOW is much more difficult

than it may seem. First of all, people (you, me; stakeholders) are used to and taught to

think very much in solutions. Thinking about WHAT often immediately triggers

thinking about HOW. A whole set of jokes and stories about lamp-based ghost and

genies are built on the relation between WHAT and HOW. For example, the

following (politically incorrect) one:

A man walking along a beach stumbled across an old lamp. He picked it up,

rubbed it, and out popped a genie. The genie said, "Okay...you released me

from the lamp...blah, blah, blah. You get one wish!"

The man sat and thought about it for a while and said, "I've always wanted to

go to Hawaii, but I'm afraid to fly as I get a sick feeling within. Could you

build me a bridge to Hawaii so I can drive over there to visit?"

The genie laughed and said, "That's impossible. Think of the logistics of that!

How would the supports ever reach the bottom of the Pacific? Also, think of

how much concrete would be needed...how much steel!! No, you must think of

another wish."

The man said, "Okay," and tried to think of a really good wish. Finally, he

said, "I've been married and divorced four times. My wives always said that I

don't care about them and that I'm insensitive. So, I wish I could understand

women, know how they feel inside, what they're thinking when they give me

the silent treatment, know why they're crying, know what they really want

when they say 'nothing,' know how to make them truly happy..."

The genie said, "You want that bridge two lanes or four?"

Thinking about HOW in direct relation to WHAT is alright and actually quite

practical in many cases, but is hinders clear and thorough thinking about the WHAT

in systems development: RE. This is mainly because it makes us skip any thoughts

about alternative ―WHATs‖, and also about the tricky details of the WHAT. The

WHAT has proven to be a rather difficult thing to get your head around; at first it

sometimes feels as if there exists no WHAT, only a HOW. Do not be discouraged so

easily; if you keep trying an essential WHAT always presents itself, and this will give

you a distinct feeling of understanding the essentials.

For example: if I ask you ―what does your word processor do for you‖, chances are

you can speak to me for quite some time about its features and what it looks like.

However, if I push on and want to know what it really does for you, then things

become more interesting. Does the machine help you write, or think, or get

information across to other people? It somehow helps doing all of these things, but

―functionality‖ often is very hard to talk about in a precise way (i.e. hard to specify);

strangely, often much harder than the means deployed to get the job done. You

assume that the Word Processor is the best way to go to get WHAT you want.

Perhaps this is so. But in big and expensive systems development processes, things

should not just be assumed or done lightly. In fact, people have become so fed up

with the narrow-mindedness that can be caused by strict HOW-oriented development

that they wanted to distinguish the WHAT from the HOW more explicitly –and came

up with Requirements Engineering as a separate activity.

1.4 The Gnome Metaphor

I often use the following somewhat corny but effective metaphor to help myself

separate WHAT from HOW. In case of doubt, imagine the HOW is dealt with by

deploying gnomes (―kabouters‖), who can manage just about anything you ask them.

This gets rid of the HOW aspect and leaves you with the WHAT. In the Word

Processor case, imagine you have a very literal-minded gnome living in a drawer of

your desk who you can call on day and night to do for you exactly what your word

processor would do for you. How (in exactly which words!) would you ask the gnome

for help the first time you want this kind of support from him? How do you explain to

him exactly WHAT you want, leaving the HOW to him? And most interestingly: can

you think of any different THATs that you would actually like your word

processor/gnome to deliver, that are not typically supported by current word

processors? Can you come up with some truly new functionality? Then your fortune

might be made (that is, if good old MS buys your idea rather than ―borrowing‖ it).

1.5 WHAT before HOW, or what?

Separating HOW from WHAT is not the only thing that RE is about (as I said, WHY

and even HOW do come in somewhere), but it is a key aspect of the ―art‖ of RE. It

may well be the case that you do need to think and talk about HOW in RE. Dealing

with HOW is not forbidden as such! You just need to be able to separate it from

WHAT, in your mind and on paper.

Common sense tells us that it is a good thing to think about WHAT before HOW (and

even about WHY before WHAT). However, as we've seen in the joke, if you know in

advanced that WHAT you want cannot be done, you might as well forget about it

right away. This is why RE is not just about what everyone wants, it is ultimately also

about finding a realistic package of requirements that everyone involved can agree

on. This requires solid interaction with the people who do the building. In [K&G], the

assumption largely is that RE takes place in close relation to actual software building.

This is a terrific idea in real life, but in this course and our Case Project we will

unfortunately not be able to simulate such a situation. Therefore, we are stuck with

WHAT without HOW. Still, you may be able to think about HOW at least a bit. As

long as you keep them separated, and get your priorities right!

There is another reason why WHAT before HOW can seem a good idea: in case

promises are made, even legal promises (contracts). The ―contract-style requirements

lists‖ that [K&G] dislike so much (for communicative reasons!) are used exactly for

this. However, one always has to be very careful about promising things that cannot,

in fact, be done. It may seem cunning to get people to promise things they cannot

deliver (making them pay fines and so on), but in most practical cases, in the end this

means nobody gets what they want, and everyone looses. And in many cases, this

indeed happens (in class, I may tell you some rather sad stories about this).

1.6 RE and “design”

Often things are said about the relationship between RE and ―design‖; this course is

no exception. On a general basis, it is important to point out that there are (at least)

two different ways of interpreting ―design‖ in this context, and that you encounter

both all the time, and that this may cause great confusion. Most importantly, in the

textbook the term ―design‖ is used in a rather limited way that I find a bit unfortunate

and confusing.

[K&G] tell you that RE is a system development activity that is strictly separate from

Design. They use ―design‖ quite strictly in the sense of ―technical design‖

(supposedly HOW-related). However, there is also such a thing as ―functional

design‖, and if you come up with anything new in RE (for example work out a detail

that a stakeholder did not come up with by herself), or make any ―requirements

choice‖ at all, you are in fact doing functional design. So if you are doing RE (apart

from the pure one-way stakeholder-oriented information gathering bit, perhaps),

doing some sort of design is in fact unavoidable. Keep this in mind, not just to avoid

confusion about terminology, but also because it is important to realize that though

you need much input from stakeholders, RE is still a creative activity in which the

requirements engineer (that is you!) is actively involved and makes many small

decisions.

1.7 Some notes about the textbook and this course

In Chapter 1 of the textbook, emphasis is put on two not-so-successful aspects of RE

as it has been practiced:

 Contract-style requirements lists

 Prototypes

Such lists and prototypes are the chief arguments for [K&G] to prefer another

approach: Use Cases. The book sometimes seems to be a bit of a crusade against lists

and prototypes. While I do not disagree with [K&G] about their disadvantages, I

would like to make it clear that neither contract style lists nor prototypes are ―bad‖ in

principle; in some cases they are excellent means to get some job done. However, in

RE they are perhaps not the best things to put central. [K&G] mostly react to other,

existing ―styles‖ of RE. In other words, other people have created and advocated

whole approaches and methodologies for RE that are based on requirements lists or

prototypes, and [K&G] try to make a strong case (American style) for Use Cases, so

they have to say what they don't like about other popular approaches.

I do believe Use Cases are a great technique to put central in RE. However, I also take

the liberty to add to the [K&G] approach some other techniques and ideas, fitting Use

Cases snugly into a methodology that better suits the Nijmegen approach to systems

development. So you'll have to be aware of the mix of two slightly different flavours

of RE in this course: RE à la Kulak & Guiney and RE à la Hoppenbrouwers/ICIS
1
.

We present the two flavours in the conviction that together, they work well –like an

ice cream cone with two complementary flavours. Please be aware of the distinct

flavours, however, since it will vastly improve your understanding of the fine points

of the course content.

2. The structure of the final requirements deliverable

In this section I will briefly present the main deliverables we expect in the final

requirements document of the Case Project, and the relationships between some of

them.
All but a few of the deliverables mentioned are also mentioned in [K&G].

However:

 I have added a number of items

 I am stricter than [K&G] about how various items (in particular the ―key

items‖) relate to each other

 Though the documentation is essentially ―informal‖, in terms of coherence and

consistency, I demand a standard that is almost formal (i.e. on par with

mathematical texts). Your documentation should be a tightly interconnected

set of sub-deliverables, with consistent concepts/terminology and no dangling

ends. I am really serious about this.

Now let us have a look at all main items we expect in the requirements deliverable.

The items mentioned can be seen as required sections in the documentation.

In chapter 3, we will return to the key deliverables (a subset of the deliverables

discussed in chapter 2) and elaborate on how to create them. This is a somewhat

different perspective.

2.1 About the “Introduction”

There is not much I say here about the Introduction. The main point I want to make is

that the introduction of a report like the one you are producing has a clear

1
 The ―Institute for Computing and Information Sciences‖ of Radboud University

Nijmegen

functionality: to set the scene and provide a clear context for what follows. This

means that it matters what the audience for the report is, what they want, and what

they already know or do not know. Be relevant. To be blunt about it: actual bla bla

will not be tolerated. An introduction is not just a header with some semi-random

entertaining text underneath it. But on the other hand do not leave out essential stuff

that belongs in a requirements document even if everybody involves already knows it.

So be both relevant and complete. This is sometimes hard, but nobody ever told you it

was going to be easy.

2.2 About the “Problem Statement”

This is the WHY bit of the case project, put in a somewhat negative form: what is

―wrong‖? What should change? As holds for all items: do not hesitate or forget to

update this section as the project progresses.

2.3
About the “Stakeholder Analysis”

This includes items like ―user demography‖ (what types of stakeholders (roles

played) do you encounter in this case, and ―stakeholder list‖ (actual, named

stakeholders, i.e. specific people and the role(s) they play.). If there are only few

stakeholders, that's fine; just provide a clear-cut and relevant listing and description of

the stakeholders (users and other relevant stakeholders!).

2.4 About the “Mission and Vision (and Values)” section

This is a difficult section. It isn’t even all that important, but I want you to have a

serious go at it anyway. The information captured in it mostly comes from what

[K&G] call the Chief Executive Sponsor (in the case study, that’s probably me), but

you should help him/her formulate it and at the very least you should somehow show

you really understand it. As to the (often misunderstood) differences between the

three items [K&G p56]:

 Mission— What the project will do (close to WHY)

 Vision— What the end product will be (close to WHAT)

 Value— What principles will guide the project members while they do what

they will do and build what will be; the main rules of the game played.

In particular the ―values‖ are almost impossible to make sense of in the limited

context of our course and case study. I am therefore willing to reduce the item to

―Mission and Vision‖.

2.5 About the “Statement of Work”

This is a tricky bit to include in the final deliverable, because the SoW changes as the

project progresses, and is really obsolete once the project finishes. It is, in other

words, a project management item. Try to seriously create a work estimation and

planning, also for your won sake, but to be honest a Statement of Work is not a very

realistic item in our setting and is of limited importance.

2.6 About the “Risk Analysis”

For this, pretty much the same holds as for Statement of Work. Try to seriously

describe some risks involved in your project without spending too much time on this.

Note that this Risk Analysis is purely about project risks: risks that you do not make

my demands within this case project. So it is not about risks inherent in the system

that eventually may be delivered.

2.7 About the “Use Case Survey”

Now we’re getting to the more important bits! The use case survey provides an

integral overview of all use cases in the documentation. [K&G] are not always very

clear about this. Some people are confused about the difference between the use case

survey and actual use cases (each one of them structured by means of the use case

template). In fact, there is a little bit of overlap, but they are very distinctly different

deliverables. The survey mostly helps you keep the overview over the collection of

use cases you make, especially in the early phases of the project. Here are the items it

should contain:

 Use case number

 Use case name

 Initiating Actor Note that this is a subtype of the generic ―actor‖ used in use

case diagrams.

 Description. Elswhere in [K&G] also called ―summary‖. Once you also have

an actual use case, this should be an exact copy of the descriptions in each

corresponding individual use case. If you do not have a proper use case yet,

the description is the only `content' you have for it.

 Completeness. How complete is this use case at this point? In the final

deliverable, completeness must be ―full‖, but in earlier stages this will mostly

be different.

 Maturity. Much like `completeness', but this concerns how well thought

through the use case is.

 Dependency concerns on which items / aspects the use case is dependent.

This is often a hard item to come up with; only include it if it is relevant,

otherwise you can leave it out.

 Source: where did the information on which you base this use case come

from? How much did you make up yourself?

 Comments: anything important but not covered by other items above.

A word of caution: `use case complexity', `architectural priority', and `business

priority' are mentioned by [K&G] but you can leave them out.

In addition, you have to add the use case diagram here, that includes (integrates)

all use cases, so the relationship between them can be viewed at a glance.

2.8 About the “Use Cases”

This is, of course, the pièce de résistance of our requirements document. Quite a lot is

said about it in [K&G], thoughout the book. Here I will just give some brief

comments on the ―use case template‖ as presented below, in particular with respect to

where we take a different point of view from that of [K&G].:

 Use Case Diagram: include a use case diagram for each use case before its

textual description. Also see 2.7.

 Use case name: the name of the use case; choose it well! (see p87 [K&G];

―verb filter‖). Do not be afraid to change the name at some point in your

project (keep all documentation consistent!) if you come up with an improved,

more meaningful name along the way.

 Iteration: which phase (filled or focused), which version (if you do

versioning, which is recommendable).

 Description (a.k.a. summary). Should always be identical to corresponding

description in the use case survey.

 Basic course of events (BCoE). The heart of a use case. The stepwise story of

the interaction between actor and system.

 Alternative paths. In [K&G], these are intended to keep things ―simple‖ from

a user perspective; according to them, if you were allowed to provide a

complex BCoE with ―IF-THEN-ELSE‖ like structures, you would not even

need the alternative paths. In [K&G] they are supposed to be used to write out

clearly all important IF-THEN-ELSE path individually.

 Exception paths: ―error handling‖ though never in terms of actual ―error‖

messages (which are a ―how‖ thing). They capture what interaction path

happens if things go ―not as intended‖.

 Extension points: only apply if you use extensions in your use case diagram.

We do not find extension points very important.

 Triggers: what sets the use case in motion? The initial move of some actor? A

moment in time being reached? Something going wrong? Note that this is not

the same at all as a precondition!

Assumptions: relevant things to know that, however, do not apply to the system as

such. Compare it with the informal assumptions that you were supposed to include in

your Beweren & Bewijzen project in the first year. They are the opposite of

Preconditions, in this respect. If assumptions are not clearly there, leave them out!

Preconditions are very explicit things that should be the case at the beginning of a

BCoA, the ―initial state‖. They can be compared to ―formalized assumptions‖ (small

and big ―A's‖) in the Beweren en Bewijzen correctness statement

(correctheidsstelling).

Postconditions can be compared to ―formalized commitments‖ (small and big ―C's‖)

in the Beweren en Bewijzen correctness statement (correctheidsstelling).

Related business rules. Clearly written in semi-formal language, but in relevant

cases formalized in ORM and/or First Order Logic (this sometimes helps a lot to get

things clearly specified!). [K&G] just talk about business rules that happen to be

around anyway. I push it a lot further. I want you to formulate the relevant business

rules, from scratch if need be, possibly based on the domain model of the use case.

How this can be done I will explain in chapter 3.

Author(s). Simply the author(s) of the use case.

Dates. Date of initial creation and dates of consecutive changes (possibly integrated

with versioning).

Below, you can see an ORM conceptual model of my view on what basic (not all!)

concepts are involved in use cases, and in particular use case diagrams.

2.9 About the “Scenarios”

Scenarios are concrete, instance-level descriptions of how a use case works.

Scenarios are mostly related to the BCoEs of use cases. A separate scenario has to

cover each alternative path and exception path of a BCoE. So there will usually be

various scenarios underlying one use case (n:1). Use these to test the various possible

Actor

Interacts with .. as in

soft-

ware

system

Use

Case

interaction

generalizes

generalization

in
c
lu

d
e

s

e
x
te

n
d

s

inclusion extension

Relation
Use Case

Diagram

paths that a use case may take (tests are not explicit deliverables, but this does not

mean you do not have to perform them! They are an important means of guaranteeing

the quality of your use cases.)

If possible, do try and keep similarities visible between the structure of the BCoE/Alt

Paths/Exc Paths and the structure of their matching scenarios. Also keep

terminology/concepts consistent across use cases and scenarios.

If you use a fact-based approach to requirements engineering (i.e. looking at the

instance level first), you may actually get some scenarios before you get use cases.

Mostly, however, you will come up with scenarios afterwards. Note that for ORM-

style domain models, their populations should be in line with the scenarios, since

these both concern instances.

Above I describe the use of scenarios as end products in the requirements document.

There is, however, a less formal use of scenarios, more oriented towards requirements

gathering. In such cases, you ask a stakeholder to describe (at instance level, though

you cannot normally ask them this literally), what they do when they perform a

certain task. They describe an example of a task. This task may well cover

various
use cases! This means that you will have to cut the scenario up later. This

kind of scenario is welcome in the documentation, but please keep them well apart

from the deliverable type of scenario.

2.10 About the “Domain models”

[K&G] do not use Domain Models in their flavor of RE (though they mention UML

Class Diagrams); we do want to see domain models, in ORM to be specific. In

principle, UML class diagrams or ER diagrams might also be used here, but you all

know ORM from the domain modeling course and we like it a lot, because:

 It has a completely formal basis; you could, for example, use ORM definitions

directly to generate software (research concerning this is in fact being done

within our institute, though not by me).

It is fact-based: it includes populations (instance level) in its conceptual

meta-framework and in its procedures

It is, if used in full, much richer than UML class diagrams or even ER

diagrams, but you do not necessarily have to use stuff like constraints,

populations, type names, verbalizations, etc. straight away; you can build it up

gradually, and even leave stuff out

 ORM is the basis of much other material we teach about systems development

and modeling; using it makes the RE course more compatible with various

other courses.

As for the use of ORM diagrams in Requirements Engineering:

 ORM is already widely used as a technique in RE, even in combination with

use cases

 Use cases are very useful, but they just fail to provide information in enough

detail to be able to hand over the requirements to the technical design people

and say: OK guys, you build this please. Domain models in ORM provide just

the last few inches of specification we like to see.

 Again, making (complete and fully specified) ORM diagrams really amounts

to formalization. This we consider useful and important as a basis for sound

functional and technical design.

So to make things absolutely clear: I do expect full ORM diagrams (including basic

constraints!) of all use cases. However, we also expect that only a limited number of

concepts occurring in the use cases is relevant for ORM modeling, and therefore that

the actual models are not so complex. The point is: they have to be there, even if they

are simple. Also provide some population examples in line with your scenarios!

Example populations are not currently defined as a separate deliverable, but I am

actually considering to do so. Note once more that the example population of a DM is

closely related to the scenarios of a use case to which the DM belongs.

As a rule of thumb concerning ―what concepts are relevant for ORM modeling in

RE‖: we are primarily interested in domain models of the actual concepts used in

interaction of the user with the system. In other words: concepts belonging to the UoD

of the user as she interacts with the system. In still other words: important aspects of

the interface language used when actors and stem interacts. It is likely that this set is

extended with some related concepts that are in the user's UoD, in particular those

needed to formulate business rules.

Concepts that should not be modeled are those that are only used in communication

about the system (i.e. are in now way part of the user's UoD or the business rules). It

could be useful to model them as well, but in the current course that would go too far.

So don’t!

2.11 About the “Business Rules”

The business rule catalog as suggested by [K&G] is quite appropriate. You are,

however, obliged to semi-formalize the business rules. With your background

knowledge, it should be easy to do so, especially if you already have an ORM domain

model. Also note that formalizing business rules is often required in other system

development and management activities: see the Business Rules Manifesto (placed on

the RE website).

Interestingly, ORM is now one of the main techniques worldwide used to capture

(formal) business rules, or at least the most basic, elementary rules in a domain.

In general, our suggestion is you that keep to the type of business rules catalog

suggested by [K&G, p60-2], but also

 Make sure the terms you use when formulating the actual rules are compatible

with the relevant ORM domain models.

 Use clearly structured, unambiguous sentences language with clearly indicated

logical or mathematical operators like AND, OR/XOR, IF, THEN, NOT, <,+,-

, etc.

 Always also include a formulation in plain natural language

Crucially, you only should include business rules explicitly related to some use case

you describe. Also, as indicated, business rules may or may not have been explicitly

formulated before your analysis started, but in principle, every organization works

according to some rules. It is up to you to find and formulate them!

Finally, please do not be confused by the ―business‖ in ―business rules‖. Perhaps a

better, more general term would be: ―domain rules‖. They describe in considerable

detail what should and should not be done in the organization (the environment in

which the system-to-be-built will function, and which it will support). For example,

consider a library. A general rule could be: ―items borrowed have to be returned

within 21 days from the day on which they were lent out, unless within 21 days from

being lent out the loan is extended by the person borrowing the extended‖. Next, there

may be rules that define when extension is possible or not, and so on. Note that all

meaningful concepts in the rule have to be included in the DM of the use case(s) to

which this rule is relevant, and also that for the rule to be properly modeled as a

business rule, some semi-formalization will be required. Creating a DM for the rule is

a good way of starting semi-formalization.

2.12 About the “Non-functional Requirements”

[K&G] claim that use cases are a good technique for capturing non-functional

requirements. I do not agree. It might be possible to use use cases for non-functionals,

but it seems to us a bit forced. Indeed, in the examples of non-functionals (the ―-

illities‖ etc.), [K&G] do themselves not use use cases. So the main advice here is:

keep to the practices recommended in book when it come to non-functionals, but do

not formulate them as use cases. You can find much more on non-functionals in the

book.

2.13 About the “ Terminological Definitions”

We expect all important terms in the use cases/domain models to be properly defined.

ORM models do not define terms as such: they provide highly contextualized type-

level descriptions of which terms occur, for example as ―cats hate dogs‖. ORM

diagrams say nothing about what ―dog‖ or ―cat‖ or ―hate‖ mean as independent

words. For this, terminological definitions are required. Together, these definitions

can be called many things, e.g. dictionary, glossary, lexicon, vocabulary, ontology,

terminology, and so on. We stick to the latter word: terminology.

Our minimal expectation for the terminology in your requirements document is a list

of key terms (preferably, all terms that also occur in your domain models) and clear

and useful natural language definitions with them. You can use existing dictionary

definitions if you like (please provide source references), but do be careful: standard

dictionaries have many limitations and they may not describe the exact meaning of

some term that the stakeholder actually means/uses in the UoD. Often, it is much

safer to write your own definition that is specially aimed at the specific context you

are working in. If necessary, get information form stakeholders. After all, both you

and the stakeholders can be expected to know what they mean with a certain word; if

not, work on it.

Traditional term definitions have a simple format: a definiens (=that which is

defined), a genus (the ―supertype‖ of what is defined), and one or more differentiae:

what distinguishes the definiens from other subtypes of its supertype. So for example,

a dog (definiens) is an animal (genus) that can bark (first differentium) and wags its

tail a lot (second differentium). Please note that these relations could be expressed in

an ORM like manner, but that would go too far since terms like bark, wag, tail etc.

probably do not as such occur in the UoD. So simply keep to the traditional definition

in natural language.

In particular in the field of Business Rules Specification, there is a brand new

initiative to find ways to better specify and communicate about the precise meaning of

rules and terms. This initiative goes by the name SBVR: Semantics of Business

Vocabulary and Rules. You could say it encompasses terminiological definitions,

ORM, and rules. For a brief introduction to SBVR, see the SBVR-1 file on the RE

website.

3. How to create the key deliverables

I am currently cooperating with Jeroen Roelofs (who’s doing his Master’s thesis on it)

in working out a detailed process description that can help you in finding out how you

can get the deliverables. It is a layered step-by-step description. I wish I had the time

to write this chapter as a perfect fit to the course, but in this version the best I can do

is include relevant paragraphs from a book chapter that is in print (to appear 2009).

IMPLEMENTING GOALS AND STRATEGIES IN A
CONCRETE WORKFLOW LANGUAGE
In this section, we show how the framework presented thus far has been used in the

implementation of a reference method for requirements modelling as taught in the 2
nd

year Requirements Engineering course of the BSc Information Science curriculum at

Radboud University Nijmegen. Please note that the method as such is not subject to

discussion in this paper, just the way of describing it. This section is based on work

by Jeroen Roelofs (Roelofs, 2007). The original work focused strictly on strategy

description; in this paper, some examples of related goal specification are added. The

strategy description was implemented as a simple but effective web-based hypertext

document that allows “clicking your way through various layers and sub-strategies” in

the model (see below).

Case study and example: requirements modeling course method

The main goal behind the modelling of strategies of the case method was to provide a

semi-formal, clear structuring and representation thereof that was usable for reference

purposes. This means that the rule-based nature of the framework was played down,

in favour of a clear and usable representation. A crucial step (and a deviation of the

initial framework) was taken by replacing the plain directed graphs used so far by

workflow-style models in the formal YAWL language (Yet Another Workflow

Language: van der Aalst and ter Hofstede, 2005). Below we show the basic concepts

of YAWL (graphically expressed), which were quite sufficient for our purposes. We

trust the reader will require no further explanation.

Figure 1: basic graphic concepts of YAWL

The main (top) context of the method is depicted in the following schema:

Figure 2: The top strategy context “Create a Requirements Model”

Note that in Figure 5, the square-based YAWL symbols correspond to the QoMo

strategy framework in that they represent states (goals/situations). The actual

strategies match the arrows between states: the actions to be taken to effectuate the

transitions between states. In other words, the diagram is a very concise way of

representing a strategy context. A useful operational addition to the framework is the

use of conditions (circles) for choosing a goal (in going from ―Use Case Survey‖ to

either ―Scenario‖ or ―Use Case‖): this was explicitly part of the existing method and

possible in YAWL, and therefore gratefully taken aboard.

All arrows in the diagram have been labelled with activity names (which are another

addition to the framework). Underlying the activities, there are strategies, which in

turn consist of one or more steps (another addition). The complete strategy description

of the activity ―create requirements model‖ which is graphically captured by the top

context (fig. 5) is the following:

1. Create problem statement

2. Create use case survey

3. Create use case based on use case survey AND create scenario based on use

case

3. Create scenario based on use case survey AND create use case based on

scenario

4. Create domain model based on use case

4. Create domain model based on scenario

5. Create terminological definition

6. Create business rule

7. Create integrated domain model

All steps listed are represented in boldface, which indicates they have underlying

composed strategies (which implies that each step is linked to a further activity which

is in turn linked to an underlying strategy). Concretely, this means that in the

hypertext version of the description, all steps are clickable and reveal a new strategy

context for each deeper activity. For example, if ―Create domain model based on

use case” is clicked, a new (rather smaller) context diagram in YAWL is shown, with

further refinement of what steps to take (strategy description). We will get back to this

particular strategy, but before we do this, some explanation is in order concerning the

irregular numbering of steps above. The occasional repetition of numbers (3. 3. and 4.

4.) serves to match the textual description with the YAWL diagram: the XOR split

and AND-join in figure 5. In addition, the two possible combinations of steps before

the AND-join needed to be combined using an ―AND‖ operator, but note that the

activities linked by AND are separately clickable.

Let us now return to the ―Create domain model based on use case― strategy. It

concerns the creation of a ―Domain Model‖ (ORM) based on a ―Use Case‖, which

(roughly in line with previous examples) boils down to a basic description of steps in

making an ORM diagram based on the interaction between user and system that is

described stepwise in the use case (please note the participants in the course are

familiar with ORM modelling and therefore need only a sketchy reference process

description). The related strategy context is a fragment of the one in the top context:

Figure 3: another strategy context –“create domain model based on use case”

Apart from this context, the underlying strategy is shown:

1. Identify relevant type concepts in use case
2. Create fact types
3. Create example population

 Make sure the example population is consistent with the related
scenario(s)

4. Make constraints complete

Steps one and two, represented in boldface, by way of more activities refer to more

compositional strategies, so they are clickable and each have an underlying strategy.

Activities 3. and 4. are represented differently, respectively signifying a guided

strategy (underlined and with additional bulleted remark) and an ad hoc strategy

(normal representation). A guided strategy is a strategy of which a description of

some sort is available that helps execute it. In the example, this guidance is quite

minimal: simply the advice to ―Make sure the example population is consistent with

the related scenario(s)‖. In view of our general framework, this guidance could have

been anything, e.g. a complex process description or even an instruction video, but

crucially it would not be part of the compositional structure. In context of our case

method, we found that a few bulleted remarks did nicely.

There still is the ad hoc strategy linked to the activity name ―Make constraints

complete‖ (step 4.). It simply leaves the execution of the activity entirely up to the

executor. As explained, it is an ―empty strategy‖ –which is by no means a useless

concept because it entails an explicit decision to allow/force the executing actor to

make up her own mind about the way they achieve the (sub)goal.

In addition to the strategy context diagrams and the textual strategy descriptions, the

hypertext description provided a conceptual diagram (in ORM) for each strategy,

giving additional and crucial insights in concepts mentioned in the strategy and

relations between them. The ORM diagram complementing the ―create domain

model based on use case‖ strategy is given in figure 7i. In context of the case, the

inclusion of such a diagram had the immediate purpose of clarifying and elaborating

on the main concepts used in the strategy description. In a wider context, and more in

line with the more ambitious goals of the general strategy framework, the ORM

diagram provides an excellent basis for the creation of formal rules capturing creation

goals. We will discuss an extension to that wider context in the next section.

Figure 4: ORM diagram complementing the strategy description

Goal and procedure rules added to the case

The case strategy description as worked out in detail by Roelofs (2007) stops at

providing a workable, well-structured description of the interlinked strategies and

concepts of a specific method. Though has been found useful in education, the main

aim of creating the description was to test the QoMo strategy framework. However, it

could in principle also be a basis for further reaching tool design involving intelligent,

rule-based support combining classical model checking and dynamic workflow-like

guidance. In order to achieve this, indeed we would need to formalize the goals and

process rules of the strategy descriptions to get rules of the kind suggested in (van

Bommel et al., 2006) and in section 6.4 of this paper (―the rules underlying a strategy

frame‖). We will go as far as giving semi-formal verbalizations of the rules.

Fortunately, such rules (closely related to FOL descriptions) are already partly

available even in the case example: they can be derived from, or at least based on, the

ORM diagrams complementing the strategy descriptions, and the YAWL diagrams

that represent the strategy contexts. For example, fig. 6 corresponds to a (minimal)

strategy frame as shown in figure 2. The corresponding goals is:

G1 There is at least one Domain Model

This is an instance-level goal. Next, we define the one situation that is relevant to the

example strategy ―create domain model based on use case‖:

S1 There is at least one Use Case

So we assume that one or more Use Cases have already been identified

(presumably as a goal of another strategy) and that these are used as input for the

strategy ―create domain model based on use case‖. We now can weave a rule-based

definition combining G1, S1, and various C-rules that correspond to the transitions

captured in the strategy description. The key rules raising demands that correspond to

steps in the strategy are represented in boldface.

S1 There is at least one Use Case (situation)
C1 SHOULD LEAD TO
G1 There is at least one Domain Model (main goal)
G1.1 Each Use case has concepts described in exactly one Domain model.
G1.2 Each Domain model describes concepts in exactly one Use case.
C2 SHOULD LEAD TO
G2.1 It is possible that more than one Type concept is part of the same Domain
model and that more than one Domain model includes the same Type concept.
G2.2 Each Type concept, Domain model combination occurs at most once in the
population of Type concept is part of Domain model.
G2.3 Each Type concept is part of some Domain model.
G2.4 Each Domain model includes some Type concept.
G2.5 Each Type concept that is part of an Interaction description of a Use case
that has its concepts described by a Domain model should also be part of that
Domain model (goal underlying step 1).ii
C3 SHOULD LEAD TO
G3.1 It is possible that more than one Domain model includes the same Fact type
and that more than one Fact type is part of the same Domain model.
G3.2 Each Fact type, Domain model combination occurs at most once in the
population of Domain model includes Fact type.

G3.3 Each Domain model includes some Fact type.
G3.4 Each Fact type is part of some Domain model.
G3.5 Each Fact type that is part of a Domain model should include one or more
Type concepts that are part of that same Domain model (goal underlying step
2).
C4 SHOULD LEAD TO
G4 Each Fact type of a Domain Model is populated by one or more Facts of the
Population of that Domain Model.iii (goal underlying step 3)

C4 SHOULD LEAD TO
G5.1 Each Scenario describes concepts of exactly one Population.
G5.2
Each Population has concepts described in some Scenario.
G5.3 It is possible that the same Population has concepts described in more
than one Scenario.
G5.4 Each Fact that is part of a Population which describes concepts of a
Scenario should include at least one Instance concept that is included in that
Scenario. (goal underlying the note with step 3)
C5 SHOULD LEAD TO
G6.1 Each Fact type has some Constraint. (goal underlying step 4)
G6.2 Each Constraint is of exactly one Fact type.
G6.3 It is possible that the same Fact type has more than one Constraint.

Note that further restrictions could be imposed on G6.1, demanding explicitly that the

constraints applying to a fact type should correspond to the population related to that

fact type, and so on. This constraint is left out because it is also missing in the

informal strategy description (step 4).

So far, our definition does not include temporal ordering. The following orderings are

applied in the C-rules:

C1 no restriction

This reflects the achievement of the main goal, which lies outside the temporal scope

of the strategy realizing it. For the rest, rather unspectacularly:

C2 occurs before C3
C3 occurs before C4
C4 occurs before C5

For a somewhat more interesting example of temporal factors, consider the XOR-split

and AND-join in fig. 5. (splitting at ―use case survey‖ and joining at ―domain

model‖). Obviously, such split-join constructions involve ordering of transitions:

C1 occurs before C2
C1 occurs before C3
C2 occurs before C3 (under condition Y) XOR C3 occurs before C2 (under condition
Z)
C2 AND C3 occur before C6

These expressions of rules covering YAWL semantics are rough indications; a

technical matching with actual YAWL concepts should in fact be performed, but this

is outside the current scope.

Finally, note that in the implementation, fulfillment of the main goal, ―create domain

model from use case‖, is achieved even if the domain model is not finished. However,

the unfinished status of the domain model would lead to a number of ―ToDo‖ items.

This emphasizes that the strategy is a initial creation strategy (bringing some item

into existence), which next entails the possibility that a number of further steps have

to be taken iteratively (triggered by validity and completeness checks based on, for

example, G-rules), hence not necessarily in a foreseeable order.

Findings resulting from the implementation

The implementation led to the construction of a specific meta-model reflecting the

key concepts used in that implementation (figure 8). We will finish this section by

presenting the most interesting findings in the implementation with respect to the

generic framework, at the hand of fig. 8.

Sources and products

The specific flavour of the implementation led to the introduction of the concepts

source, product, intermediate product, raw material, and void. They were needed to

operationalize the only goal/strategy category explicitly used in the implementation:

creation goals. Situations (which are state descriptions) took the shape of concrete

entities (documents) that typically followed each other up in a straightforward order:

void or raw material input leading to products, possibly after first leading to

intermediary products. Clearly, these concepts classified the items created; such

classification emerged as helpful from the discussions that were part of the

implementation process.

Use of YAWL concepts
YAWL concepts (and their graphical representations) were introduced to capture

strategy context, while a simple textual description format was used to capture the

stepwise strategy description. The YAWL concepts were very helpful in creating

easy-to-read context descriptions. In addition, they helped in operationalizing the

concepts required to capture the workflow-like transitions between states (i.e.

between creation situations/goals). Whether YAWL diagrams would be equally useful

in describing contexts for other types of goal (for example, validation goals or

argumentation goals) remains to be explored.

In addition, YAWL concepts can be used as a basis for formal rule definition

capturing the recommended order of steps. The formal underpinnings of YAWL

would be extra helpful in case of automated (rule-based) implementation of the

strategies, which was still lacking in the prototype (for more on this, see ―further

research‖: the ―modelling agenda generator‖).

Activity descriptions, names, and steps

A simple but crucial refinement needed to operationalize the general framework was

the introduction of the ―activity‖ and ―activity name‖ concepts. These allowed for the

successful implementation of the recursive linking of activities to strategy contexts to

strategies to strategy steps to further (sub)activities, and so on. We expect this

amendment to be useful at the generic level, and henceforth we will include it in the

main framework.

“Immediate” concept not used

The ―immediate‖ concept was in principle included in the case study implementation

but in the end was not used. We still believe it may be required in some strategy

descriptions. The ordering in the creation strategies in the case is basic step-by-step.

In more complex, dynamic setups, the availability of both immediate and non-

immediate ordering still seems useful. However, admittedly the actual usefulness of

the ―immediate / non-immediate‖ distinction still awaits practical proof.

Figure 5: meta-model derived from strategy description case

Lessons learned from the case study

Apart from he conceptual findings discussed in the previous section, some other

lessons were learned though the case study:

 Syntax-like rules can be successfully applied beyond actual modelling

language syntax (which amounts to classic model-checking based on

grammar goals) into the realm of more generic ―creation goals‖ which may

concern various sorts of artefacts within a method.

 The case has shed some light on the fundamental distinction between

creation and iteration in dealing with creation goals. While iteration is

essentially unpredictable and thus can only receive some ordering (if any at

all) through rule-based calculations based on rules and state descriptions, for

initial creation people do very much like a plain, useful stepwise description

of ―what to do‖: a reference process. Only after initial creation, the far less

obvious iteration stage is entered. Also, if a robust rule-based mechanism

for guiding method steps is in place, participants may choose to ignore the

recommendations of the reference process. This can be compared by the

workings of a navigation computer that recalculates a route if a wrong turn

has been made.

CONCLUSIONS AND FURTHER RESEARCH
This chapter set out to present a plausible link between the SEQUAL approach to

model product quality and our emerging QoMo approach to process quality in

modeling, and to provide basic concepts and strategies to describe processes aiming

for achievement of QoMo goals. We did not aim to, nor did, present a full-fledged

framework for describing and analyzing modeling processes, but a basic set of

concepts underlying the design of a framework for capturing and analyzing 2
nd

 order

information systems was put forward.

We started out describing the outline of the QoMo framework, based on knowledge

state transitions, and a goal structure for activities-for-modeling. Such goals were then

directly linked to the SEQUAL framework’s main concepts for expressing aspects of

model items and its various notions of quality, based on model items. This resulted in

an abstract but reasonably comprehensive set of main modeling process goal types,

rooted in a semiotic view of modeling. We then presented a case implementation of

how such goals can be linked to a rule-based way of describing strategies for

modeling, involving refinements of the framework. We added concrete examples of

rules describing goals and strategies, based on the case implementation.

These process descriptions hinge on strategy descriptions. Such strategies may be

used descriptively, for studying/analyzing real instances of processes, as well as

prescriptively, for the guiding of modeling processes. Descriptive utility of the

preliminary framework is crucial for the quality/evaluation angle on processes-for-

modeling. Study and control of a process requires concrete concepts describing what

happens in it, after which more abstract process analysis (efficiency, cost/benefit,

levels of risk and control) may then follow. Means for such an analysis were not

discussed in this paper: this most certainly amounts to future work.

Besides continuing development and operationalization of the QoMo strategy and

goal framework for quality modeling by applying it to new and more complex cases,

we need to push forward now to implementations that actively support our rule-based

approach. An initial implementation, using Prolog and a standard SQL database, is in

fact available, but has not been sufficiently tested and documented yet to report on

here. This “modeling agenda generator” dynamically generates ToDo lists (with

ordered ToDo items if C-rules apply) based on the model states as recorded in the

repository. We will finish and expand this prototype, testing it not only in a technical

sense but also its usability as a system for supporting real specification and modeling

processes. In the longer term, we hope to deploy similar automated devices in CASE-

tool like environments that go beyond the mere model or rule editors available today,

and introduce advanced process-oriented support and guidance to modelers as

required in view of their preferences, needs, experience, competencies, and goals.

REFERENCES
Van der Aalst, W. And ter Hostede, A. (2005): YAWL: Yet Another Workflow

Language. Information systems, 30(4), 245-275.

Bommel, P. van, S.J.B.A. Hoppenbrouwers, H.A. (Erik) Proper, and Th.P. van der

Weide (2006): Exploring Modeling Strategies in a Meta-modeling Context. In R.

Meersman, Z. Tari, and P. Herrero, editors, On the Move to Meaningful Internet

Systems 2006: OTM 2006 Workshops, volume 4278 of Lecture Notes in

Computer Science, pages 1128-1137, Berlin, Germany, EU, October/November

2006. Springer.

Chrissis, M.B., M. Konrad, and S. Shrum (2006): CMMI: Guidelines for Process

Integration and Product Improvement, Second Edition. Addison-Wesley.

Halpin, T.A. (2001). Information Modeling and Relational Databases, From

Conceptual Analysis to Logical Design. Morgan Kaufmann, San Mateo,

California, USA, 2001.

i The ORM diagrams in this paper were produced by means of the NORMA case tool

developed by Terry Halpin and his co-workers at Neumont University:

http://sourceforge.net/projects/orm.

ii In expressing this complex rule, we use a controlled language called Object Role

Calculus: see (Hoppenbrouwers et al., 2005c)

iii Rules G4 and G5.4 refer ―Facts‖ and ―Instance concepts‖, which are not included

in figure 7 but in the ORM diagram (not presented in this paper) supporting a

different strategy, namely ―create domain model based on scenario‖. In the

implementation, populations are defined as included in a domain model.

