Lumping Simulation

Quantitative Logics
12 June 2013
David N. Jansen

Simulation and bisimulation

- general notions on behaviour of many automata-like models.
- Given two states s and t in a model:
 - -t simulates $s ext{ } e$
 - := t can do everything that s does.
 - -s and t are bisimilar $s \sim t$
 - := s simulates t and t simulates s, through the same relation.
 - s and t are simulation-equivalent $s \approx t$:= s simulates t and t simulates s, possibly through different relations.

Logical characterisation of (bi)simulation

- States s and t are bisimilar $(s \sim t)$
 - \leftrightarrow

they satisfy the same formulas

• $t \text{ simulates } s \ (s \leq t)$

t satisfies all liveness formulas that s satisfies

s satisfies all safety formulas that t satisfies

Bisimilar states in a Markov chain

- Assume given a labelled MC (S, P, L).
- An equivalence relation $R \subseteq S \times S$ is a bisimulation if for all states $s, t \in S$, s R t implies
 - -L(s)=L(t)
 - For every R-equivalence class $C \subseteq S/R$, P(s,C) = P(t,C)
- States *s* and *t* are bisimilar or lumping equivalent if ∃ bisimulation relation *R* with *s R t*.

Logical characterisation of lumping equivalence

- States s and t are lumping equivalent (s ~ t)
 - they satisfy the same PCTL formulas
- $t \text{ simulates } s \ (s \leq t)$
 - \leftrightarrow

t satisfies all live PCTL formulas that s satisfies

live PCTL formula:
lower bound on probability
of good behaviour

Bisimulation minimisation (= Lumping)

- Bisimulation is an equivalence relation
- bisimulation quotient
 = smallest model
 that is bisimilar to original model

 Fast bisimulation minimisation makes model checking faster (and is guaranteed to be correct)

Partition refinement

- standard algorithm to find bisimulation equivalence classes
- maintains a partition of the states,
 i.e. a division of states into disjoint subsets
 - an overapproximation to the equivalence classes

Partition refinement

- ① start with a coarse partition Π_0
- (2) refine partition until fixpoint is reached
 - − Sp is splitter for $B \subseteq \Pi$ if the probability to enter Sp is not the same for every state $\subseteq B$.
 - In that case, split B into subparts that have equal probability.
- (3) the resulting partition contains the bisimulation equivalence classes

Example

Example on the blackboard.
 (See Baier/Katoen, p. 811: Craps)

More Efficient Lumping

- not every new set in the partition becomes a (potential) splitter
- keep a list of potential splitters
- if a non-splitter block is split,
 all but one subblock are potential splitters
 - works because total probability is constant

Initialisation

- /* Create a block for every possible label */ $\Pi := \{ \{ s \mid L(s) = A \} \mid A \subseteq AP \} \setminus \{ \emptyset \} \}$
- /* Create a list of potential splitters */ $\mathcal{P}S := \Pi$

Delete the largest element from PS.

total probability to make a move to $\bigcup_{B \in \Pi} B$

Main loop

- while $PS \neq \emptyset$
 - Pick any $Sp \in \mathcal{P}S$ and delete it from $\mathcal{P}S$
 - Split Π according to Sp (This may change PS).

Split partition according to (potential) splitter Sp

- /* Calculate P(s,Sp) */ Set all sum(s) to 0. For every state $t \in Sp$
 - For every transition $s \rightarrow t$
 - sum(s) := sum(s) + P(s,t)
 - Mark state s
- /* Refine partition */ For each block $B \subseteq \Pi$ containing marked states
 - Split B into subblocks,
 each containing all states with a specific P(s,Sp)

Split partition according to (potential) splitter Sp

- /* Calculate P(s,Sp) */
- /* Refine partition */ For each block $B \subseteq \Pi$ containing marked states
 - Split B into subblocks, each containing all states with a specific P(s,Sp)
 - Replace B in Π by these subblocks
 - If $B \in \mathcal{P}S$, replace B in $\mathcal{P}S$ by these subblocks; otherwise, add all subblocks of B to $\mathcal{P}S$, except the largest one

Time complexity

- Take only the necessary potential splitters
 → each state is at most log |S| times in a splitter
- "Split B into subblocks" requires sorting with key P(s,Sp)
- total complexity therefore $|\mathbf{P}| \cdot (\log |S|)^2$
- can be improved to $|\mathbf{P}| \cdot \log |S|$ by using a sort algorithm for equal keys

Revisiting Weak Simulation for Substochastic Markov Chains

QEST 2013

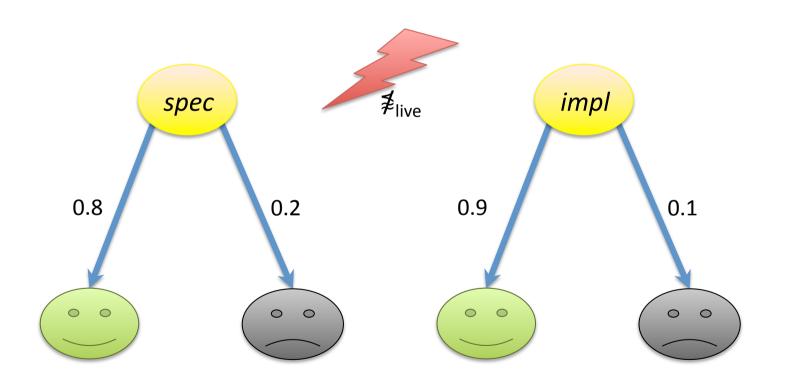
substochastic DTMC

• A Markov chain consists of:

- <i>S</i>	finite set of states
	(often $S = \{1, 2, n\}$)
$-\mathbf{P}: S \times S \rightarrow [0,1]$	transition probability matrix (with row sums ≤ 1)
$-\pi_0: S \rightarrow [0,1]$	initial state distribution (sometimes)
$-L:S \rightarrow 2^{AP}$	labelling with atomic propositions

Why substochastic?

The system works correctly with probability ≥ 0.8 .



Why substochastic?

The system works correctly with probability ≥ 0.8 .

