Probabilistic CTL

David N. Jansen

Constrained Probabilistic Reachability

PCTL syntax

state formulas φ, ψ

– а

— ¬ф

 $-\phi v\psi$

 $-\mathbf{P}_{<\rho}(\Pi), \mathbf{P}_{\leq\rho}(\Pi), \mathbf{P}_{\geq\rho}(\Pi), \mathbf{P}_{>\rho}(\Pi)$

atomic proposition

negation

disjunction

probability constraint

path formulas Π

 $-X \Phi$

 $-\psi \cup \varphi$

 $- \psi U^{\leq k} \varphi$

 $p \in [0,1]$

next state

unbounded until

bounded until

PCTL model checking

 construct satisfaction sets bottom-up (as with CTL model checking)

- new step: probabilistic operator $P_{\geq p}(\Pi)$
 - > constrained probabilistic reachability

How to calculate Sat($\mathbf{P}_{\geq p}(\neg lose\ U^{\leq k}\ win)$)

- modify Markov chain:
 make all win- and all lose-states absorbing
- calculate $\pi_{win} = P^k \cdot \mathbf{1}_{win}$

 $\pi_{win}(s)$ = probability that ($\neg lose\ U^{\leq k}\ win$), if starting in s

• For every state s: if starting If $\pi_{win}(s) \ge p$, then $s \in \text{Sat}(P_{\ge p}(\neg lose \ U^{\le k} \ win))$

Advantage: calculate for each state s at once!

Stalemate states

How to find U_0

- create list of winning states
- iterate through list from start to end: for each state, add non-losing predecessors to end of list
- when iteration is complete, the list contains all states except U_0

Step-bounded reachability

- Assume $U_1 = \{\text{winning states}\}$
- $x_n(s) := \text{probability of } (\neg lose U^{\leq n} win),$ if s is the start state

•
$$x_0(U_1) = 1$$
 $x_0(U_0 \cup U_2) = 0$

•
$$x_{n+1}(U_1) = 1$$
 $x_{n+1}(U_0) = 0$

$$x_{n+1}(s) = \sum_{t \in S} \mathbf{P}(s,t) \cdot x_n(t)$$

How to calculate the probability of Sat(¬lose U win)

- Make all states in Sat(win) absorbing.

 Reason: All paths reaching a win-state satisfy the formula.
- Make all states in Sat(lose) absorbing.
 Reason: All paths reaching a lose-state falsify the formula.
- In the modified MC,
 Sat(¬lose U win) = Sat(true U win)

How to calculate the probability of Sat(true U win)

- Only states in Sat(win) \cup U_0 are recurrent (i.e. have steady-state probability \neq 0)
- use steady-state analysis to find the probability to reach Sat(win)
- Two weeks ago: steady-state analysis for irreducible MCs
- Today: steady-state analysis for reducible MCs

Constrained Probabilistic Reachability

How to Calculate Constrained Probabilistic Reachability

x(s) := probability to win without losing first,
 if s is the start state

•
$$x(win) = 1$$

$$x(lose) = 0$$

•
$$x(s) = \sum_{t \in s} P(s,t) \cdot x(t)$$

Linear equation system

States where you cannot lose

Undecided States May Exist

Non-Unique Solution: Stalemate

Unique Solution

•
$$x(s) = 1$$
 if $s \in U_1$

•
$$x(s) = 0$$
 if $s \in U_0$

•
$$x(s) = \sum_{t \in S_2} \mathbf{P}(s,t) \cdot x(t) + \sum_{t \in S_1} \mathbf{P}(s,t)$$
 if $s \in U_?$

• If all "stalemate" states $\subseteq U_0$, this equation system has unique solution.

Proof of Theorem: on the board...

• (Baier/Katoen, p. 766)

- create list of U_0 -states
- iterate through list from start to end: for each state, add non-winning predecessors to end of list
- when iteration is complete, the list contains all states except U_1

Numerical Stability

- Direct solution (= invert matrix) is numerically unstable
- Better: iterative solution
- several iterations exist:
 - $-\Upsilon$, power method
 - Jacobi or Gauss-Seidel iteration
 (general iterations for linear equation systems)

Power method iteration

Define a functional

$$Y: (x: S \to [0,1]) \mapsto (x': S \to [0,1])$$

•
$$x'(win) = 1$$
 $x'(lose) = 0$

•
$$x'(s) = \sum_{t \in S} \mathbf{P}(s,t) \cdot x(t)$$

• Theorem 10.15: Least fixed point of Υ is the solution.

Proof of Theorem: on the board...

The fixpoint is unique: (Knaster–Tarski)

Model checking procedure

- Assume given a DTMC and a formula φ
- start with simple subformulas of φ:
 - For each subformula φ', find Sat(φ')
 - Reuse results of even simpler subformulas,
 as in semantics
 (e.g. Sat(¬φ) = S \ Sat(φ))
- Continue until you reach φ' = φ

Example

start

 $\wedge \mathbf{P}_{\geq 0.3}(true\ \mathsf{U}^{\leq 6}\ win)$

 $\land P_{=1}(true \cup state_4 \lor P_{\geq 0.4}(true \cup win) \lor state_{10})$

Recapitulation

- PCTL: a logic to describe properties of Markov chains
- most important property: until formula
 - = constrained probabilistic reachability
- compute probability with equation system
 - solution is unique if …