Probabilistic CTL

David N. Jansen

Recapitulation: DTMCs

- Markov chains describe the behaviour of discrete-state systems.
- Discrete-time Markov chains count the number of steps, but not how long a step takes.
- Transient state and steady-state analysis serve to calculate state probabilities.

Probabilistic CTL

- a logic to describe properties of Markov chains
- extends CTL
- strictly speaking, not a quantitative logic (truth values are Boolean: true or false)

Constrained Probabilistic Reachability

PCTL syntax

state formulas φ, ψ

-a

atomic proposition

— ¬ф

negation

 $-\phi v\psi$

disjunction

 $-\mathbf{P}_{<\rho}(\Pi), \mathbf{P}_{\leq\rho}(\Pi), \mathbf{P}_{\geq\rho}(\Pi), \mathbf{P}_{>\rho}(\Pi)$

probability constraint

• path formulas Π

 $p \in [0,1]$

 $-X\Phi$

next state

 $-\psi \cup \varphi$

unbounded until

 $- \psi U^{\leq k} \Phi$

bounded until

Path formulas

Example formulas...

- simple communication protocol: sender sends a message; it gets through with 90% probability; otherwise it is resent until success.
 - Model this Markov chain.
 - Formulate a useful PCTL property for this MC.
- Craps:
 - Formulate a useful PCTL property for Craps.

PCTL semantics

- Formal definition:
- When does a state satisfy a state formula?
- When does a path satisfy a path formula?

Formal definition: labelled DTMC

• A Markov chain consists of:

- S	finite set of states
	(often $S = \{1, 2, n\}$)
$-\mathbf{P}: S \times S \rightarrow [0,1]$	transition probability matrix (with row sums = 1)
$-\pi_0: S \rightarrow [0,1]$	initial state distribution
	(sometimes)
$-L:S \rightarrow 2^{AP}$	labelling with
	atomic propositions

PCTL semantics: state formulas

Sat(ϕ) = set of states that satisfy ϕ :

```
• Sat(a) = \{s \mid a \in L(s)\}
```

- $Sat(\neg \varphi) = S \setminus Sat(\varphi)$
- $Sat(\phi v \psi) = Sat(\phi) \cup Sat(\psi)$
- $Sat(\mathbf{P}_{\geq p}(\Pi)) = \{s \mid Prob_s Sat(\Pi) \geq p\} \text{ etc.}$
- Prob_s Sat(Π) = probability to get a Π -path, if you start in s

PCTL semantics: path formulas

Sat(Π) = set of paths that satisfy Π :

```
• Sat(X \phi) = {\sigma | \sigma[1] \in Sat(\phi)}

• Sat(\psi U \phi) = {\sigma | \exists i \geq 0, \sigma[i] \in Sat(\phi) and \forall j < i, \sigma[j] \in Sat(\psi)}

• Sat(\psi U^{\leq k} \phi) = {\sigma | \exists i \geq 0, i \leq k and \sigma[i] \in Sat(\phi) and \forall j < i, \sigma[j] \in Sat(\psi)}
```

Measurability

• For every PCTL path formula, the set of paths satisfying the formula is measurable (i. e. is in the σ -algebra).

 Proof: one can construct the set as a (disjoint) union of cylinder sets... (details on board)

PCTL model checking

 construct satisfaction sets bottom-up (as with CTL model checking)

- new step: probabilistic operator $P_{\geq p}(\Pi)$
 - constrained probabilistic reachability

Example...

- Craps, formula $P_{>0.3}(\neg state_4 U^{\leq 6} win)$
- "Is the probability to win with up to 6 rolls
 > 0.3, but without the first roll being 4?"

• Need to calculate the probability of $Sat(\neg state_4 U^{\leq 6} win) = union of cylinder sets... (on the blackboard)$

How to calculate the probability of Sat(¬*lose* U^{≤k} win)

- Make all states in Sat(win) absorbing.
 Reason: All paths reaching a win-state satisfy the formula.
- In the modified MC, $Sat(\neg lose\ U^{\leq k}\ win) = Sat(\neg lose\ U^{=k}\ win)$

- Make all states in Sat(lose) absorbing.
 Reason: All paths reaching a lose-state falsify the formula.
- In the modified MC, $Sat(\neg lose\ U^{=k}\ win) = Sat(true\ U^{=k}\ win)$

How to calculate the probability of $Sat(true\ U^{=k}\ win)$

- Sat($true\ U^{=k}\ win$) = set of paths that reach $win\ in\ k\ steps$
- Transient probability for m chain: $\Pr(\operatorname{Sat}(true\ U^{=k}\ win)) = \pi_k = \pi_0 \cdot P^k$
- sum over all win-states: $\Sigma_{s \in Sat(win)} \pi_k(s)$
- probability = $\pi_0 \cdot P^k \cdot \mathbf{1}_{win}$ vector: 1 in win-states 0 in other states
- calculate this for all initial states $\pi_0 = (1, 0, 0, ...)$ $\pi_0 = (0, 1, 0, 0, ...)$ etc.
 - \rightarrow vector $P^k \cdot \mathbf{1}_{win}$

How to calculate $Sat(\mathbf{P}_{\geq p}(\neg lose\ U^{\leq k}\ win))$

- modify Markov chain: make all win- and all lose-states absorbing
- calculate $\pi_{win} = P^k \cdot \mathbf{1}_{win}$

 $\pi_{win}(s) = \text{probability}$ that $(\neg lose \ U^{\leq k} \ win)$, if starting in s

• For every state s: if starting If $\pi_{win}(s) \ge p$, then $s \in \text{Sat}(P_{\ge p}(\neg lose \ U^{\le k} \ win))$

Advantage: calculate for each state s at once!

Example...

• calculate the probabilities for the Craps example and $P_{>0.3}(\neg(state\ 4)\ U^{\leq 6}\ win)$

Be careful: "lose" gets a new meaning here.

Optimization

- There may be stalemate states
 (Poland is not yet lost, but it will never win)
- In these states, probability to reach win is = 0
- Finding stalemate states is simpler than matrix calculations

Therefore:
 also make stalemate states absorbing.

Stalemate states

How to find U_0

How to find U_0

- create list of winning states
- iterate through list from start to end: for each state, add non-losing predecessors to end of list
- when iteration is complete, the list contains all states except U_0

Recapitulation

- PCTL: a logic to describe properties of Markov chains
- most important property: until formula
 - = constrained probabilistic reachability
- compute probability with equation system
 - solution is unique if …