
snafu design document

Hans Krutzer
Jochem Kooistra

Kash Afzal

May 21, 2013

1

Contents

1 Introduction 3

2 Justification 3

3 Requirements 4
3.1 Functional requirements . 4
3.2 Non-functional requirements . 4

4 Design 5
4.1 Global design . 5
4.2 Design in detail . 5

4.2.1 Device discovery . 5
4.2.2 Data transfer . 5

4.3 User interface design . 6

5 Planning 8

2

1 Introduction

When I first got my smartphone a few months ago, I was very happy with how it integrates and
synchronizes with the applications I already use on my computer works. After logging into my
Google account, my calendar and contacts were on the phone immediately. After configuring my
email accounts, my mailboxes were synchronized, and with Dropbox, I had all my important files
in my pocket.

After a few days however, I found out something was still missing. The same problem I
have with my desktop and laptop, I now also had with my smartphone: how do I quickly copy
something from one device to another? How do I send the image I’m looking at on my computer
to my friends on WhatsApp? How do I open a link they sent me on my computer? How do I
finish this email on my computer, that I started writing on my smartphone1?

It turns out this problem has not been solved. All of these things are doable, but it’s not very
simple. It takes way too long to open a file on my phone, that I have open on my laptop, which
is sitting just 30cm away. We are going to solve this problem with a smartphone application that
will copy text, images, and other files from a desktop computer or laptop, to its clipboard or
filestorage.

Most people have a smartphone and a computer they use simultaneously. We believe that
a lot of these people are not tech-savvy, but still encounter the problem we described. They,
however, still managed to synchronize their calendar and email, because Google spent a lot of
time on making this simple and easy. To reach these less tech-savvy people, we wish our app to
be as simple and easy-to-use as possible. This means no sea of menu’s to wade through, and
more importantly, little to no configuration.

2 Justification

Of the aforementioned problems, there’s not really one of them that has not been solved in some
kind of way. You can put images, textfiles and other files in a filehosting service like Google Drive
or Dropbox, or transfer them with Bluetooth or through a USB cable. While being the fastest
solution, a USB connection requires a cable. Bluetooth connections are not very fast, and often
draw a lot of power.

Filehosters like Dropbox and Google Drive require a third-party server to store your data. This
means you first have to send your data there, before you can download it again on your mobile
device, which is right next to your laptop. Finally, none of these solutions solve the text-sharing
problem very well: they all require a file to put your text in, which you then have to open, and
select all the text in it and put it in your clipboard.

There are apps will get the text contents of your clipboard from your computer onto your
phone, but they are not very easy to use, and require you to enter the IP of your computer. They
also lack the ability to transfer anything that isn’t text.

1The ”Drafts” folder used by the Android email client, and many other email clients, turns out to be local,
and doesn’t save emails using IMAP

3

3 Requirements

3.1 Functional requirements

We’ve formalised our functional requirements in a set of rules:

• The user must be able to perform all of the app’s abilities listed below in three clicks/taps
or less. All actions will be performed from the mobile device, not the computer.

• The user must be able to transfer text from the clipboard of a computer, to the mobile
device’s clipboard, and vice versa.

• The user must be able to transfer any a file any kind from a computer’s clipboard to the
mobile device’s storage, and vice versa.

• The user must be able to share an image to another application (using Android’s share
function) on the mobile device, if the app has just transferred one from the computer.

• The user must be able to transfer multiple images at once, selected in the Android gallery,
to a computer.

• The user must be able to transfer multiple images at once, on the clipboard of the com-
puter, to a mobile device.

• The mobile application must be able to discover computers on the network, with the only
user interaction being the user telling the application to discover computers.

• The application will be an Android widget to be placed on a user’s dashboard, for easy
access.

• The application will work from the widget, without having to ’launch’ the application.

3.2 Non-functional requirements

• The primary (and likely only) method of transferring data will be the (wireless) local net-
work.

• The application can not have a significant battery impact (e.g. more than 1% battery
usage after a day of normal use of the phone and the application).

• Transferring files from the computer to the mobile device must be as fast, or at least
not noticeably slower, than downloading the file from a local web server running on the
computer.

4

4 Design

4.1 Global design

The application has to live on both the mobile device and the user’s computer. Both will however
have similar components, these being:

1. The component that loads the data into the application from filestorage or the clipboard

2. The component that transfers the data over the network

3. The discovery-component (the part that makes your computers magically appear in the
device’s list of computers)

We however don’t believe these components can share any actual code, because of the difference
in APIs between Android and the ’regular’ Java API. Unique to both devices will their GUI, a tray
icon and widget for the computer and the Android device respectively, and unique to the Android
device will be the Android inter-application sharing option.

4.2 Design in detail

4.2.1 Device discovery

The device discovery will work through UDP messages broadcasted over the local network. The
computer will continually broadcast messages in short interval. The device will only listen, or
broadcast a single message upon use of the application, after which it will wait for a reply, to
save battery. The Android guidelines strongly recommend making sure applications use as little
network connectivity as possible, and we can therefore not continuously broadcast, to meet our
battery life requirement.

4.2.2 Data transfer

The data will not use a custom protocol. Instead, it will use the most commonly used protocol in
Android and probably on the internet: HTTP. HTTP is a tried and tested protocol, and provides
many, if not all, of the options we need for data transfer. It can also be secured with HTTPS
if necessary. HTTP has these important features built-in: statelessness, data compression, and
MIME-types. MIME-types will enable us to have a single URL on the server, with which the
application on the mobile device can discover the file type. Furthermore, because HTTP is so
common, there are many great libraries for both the client- and serverside.

HTTP requires, of course, a server, which will live on the user’s computer. The device will
use one URL to get files or text, and one URL to send files or text to, using HTTP GET and
HTTP POST respectively.

5

4.3 User interface design

The user interface will model the Google Keep application’s widget. A widget can be placed
anywhere on the dashboard. After placing the widget on the dashboard, the user can tap it, and
a menu will appear, allowing user to either ”grab” from $computer name, or ”push” to it. At the
bottom of the menu, there will be an option to discover devices, and remove items from the list.

6

7

5 Planning

Deliverable Date
First version serverside program May 24

First version clientside app (copies text, discovers devices) May 26
Second version app (copies text and images) May 29

Third version app (copies any file) May 31

8

	Introduction
	Justification
	Requirements
	Functional requirements
	Non-functional requirements

	Design
	Global design
	Design in detail
	Device discovery
	Data transfer

	User interface design

	Planning

