
Requirements Engineering, Lecture 8:

Conversational Perspective on RE

Stijn Hoppenbrouwers

2

Hooking Up with Lecture 4
•  “Information Systems”

–  Computational
–  Socio-technical

•  “System Development Systems”
–  Computational
–  Socio-technical

•  What is a development system about?
•  What does it essentially do?
•  What doe its input and output consist of?
•  What sort of interaction do users have with it?
•  How (based on what principles) can you steer it?

3

More on Development Systems
•  Input: all sorts of information “about the system”

–  Wishes, demands, standards
–  Functional, non-functional, technical
–  Many, many different aspects, stakes, and priorities
–  Architecture(s), requirements, various designs
–  But also the actual code, at various levels

•  Output: “the system” (possibly, evolutionary)
–  Software? Implemented software? Deployed software?
–  Deployed & managed (human components!)
–  Is it the actual organization?
–  How about training people, or documentation?

•  Can the development system and the operational system
really be separated?

4

Development Systems & Communication
•  How important is communication –in all its facets?
•  How important is language (syntax-semantics-

pragmatics)?

•  “2nd order information system”?
–  Information system that brings forth information system(s)
–  Certainly, a limited, quite generic point of view
–  But fundamentally, perhaps, the most important one?
–  Any alternatives, please?

5

Syntax, Semantics, Pragmatics (1/3)
•  Syntax = form/structure in language
•  Most typically: “grammar”; composition rules of sentences

and words (also called “morphosyntax”)
•  However, alphabet and how words are spelled/pronounced

essentially also belongs to syntax (sub-fields: phonology,
phonetics,typology,morphology,lexicology)

•  Also, syntax can go beyond sentences: the structure of
conversations/texts.

•  XML: way of defining and sharing syntax

6

Syntax, Semantics, Pragmatics (2/3)
•  Semantics = “meaning”
•  But only a part of meaning: meaning without the

interpretation-in-context part
•  Again, this can essentially be meaning of words, sentences,

and conversations/texts
•  There are different flavors of semantics:

–  Socio-cognitive semantics (“inside human brains”; meaning shared
between humans)

–  Mathematical/formal semantics (can be boiled down to pure
mathematical concepts)

–  Technical semantics (can be boiled down to machine states)
–  Mathematical and technical semantics can often be related (Turing

machine etc.)
•  Importantly, to express/talk about semantics, you need a

language: syntax-semantics-pragmatics Can semantics be
captured/expressed
100%?

7

Syntax, Semantics, & Pragmatics (3/3)
•  Pragmatics = language use in context
•  Entails personal interpretation (very subjective)
•  Not about form, but about what language does
•  Also about link between language and “reality”
•  “How to Do Things with Language”: Speech Acts
•  Propositional content + intentionality
•  Factual statements, questions, commands, subjective

opinions
 “John will now close the door”
 “Could you please close that door, John?”
 “It’s freezing here, isn’t it John?”

8

Knowledge, Language, & Communication in
IT and Organizations

•  What can be observed, exchanged, stored all takes the
shape of language
–  Natural language: syntax and semantics “open”
–  Semi-formal language: well described syntax
–  Formal languages (incl. programming languages):
 well-described syntax and semantics

•  Interaction / communication between all actors in the
development system can be captured in terms of:
–  Knowledge goals / strategies (“contents”: IT development fields)
–  Communication goals / strategies (pragmatics)
–  Language goals / strategies (syntax/semantics)

9

Why pragmatics in system development?
•  Syntax and semantics are merely about structures
•  To deal with processes, we need pragmatics (rules,

principles, conventions)
•  To “ground” language utterances in its social contex

(knowledge sharing, agreement, commitment) we need
pragmatics

•  Statement = “good customers get a 10% discount”
•  Is this a “true” statement, socially? Shared among

everyone? Agreed to by everyone? Committed to by
everyone?

•  What is a “good customer”? Again: shared, agreed,
committed? “Conversation about meaning”; DM!

10

Example of a grounded definition dialog I (1/4)

Participants: PM (product manager) BC (business consultant) A (analyst)

Goals: - initial definition of new business rule;
 - share and agree;
 - formalization level 0 (pre-formal)

PM: Let's make the amount of credit allowed variable,
 depending on customer status.
A: And?
PM: Good customers get high credit limit, and bad
 customers get a lower credit limit, perhaps zero.
BC: That's a nice idea.

11

Example of a grounded definition dialog I (2/4)
A: OK, so:
 [Statement1,Share{PM,BC,A},Agree{PM,BC,A}]
 "Amount_of_credit_allowed is variable"]
 [Statement2,Share{PM,BC,A},Agree{PM,BC,A}
 "Amount_of_credit_allowed depends_on Customer_status"]
 [Statement3,Share{PM,BC,A},Agree{PM,BC,A}
 "Good_customer gets high_credit_rate"]
 [Statement4,Share{PM,BC,A},Agree{PM,BC,A}
 "Bad_customer gets low_credit_rate"]
BC: Well, 2 implies 1, I suppose. Would 2 alone do?
PM: yes, I don't see why not.
A: OK, 1 is thrown away:
 [Statement1,Share{PM,BC,A},Agree{},REJECTED
 "Amount of credit_allowed is variable“,
 Argument{BC,"is implicit in statement2"}]

12

Example of a grounded definition dialog I (3/4)

PM: And where has the "or zero" gone?
A: I thought that 0 is just a very low credit rate.
 Agreed?
PM: Yeah, I suppose so. OK.
BC: Yes, that makes sense.
A: well then:
 [Statement4,Share{PM,BC,A},Agree{PM,BC,A}
 "Bad_customer gets low_credit_rate",
 Argument{A,"low includes 0"}]

BC: OK, but what defines a "good customer"?

... (and so on)

13

Example of a grounded definition dialog I (4/4)
Customer

Status
Credit
Rate

depends on/determines

{good,bad}

CustomerStatus(c,good) ⇒ CreditRate(c,high) ,

{high,low}

CustomerStatus(c,bad) ⇒ CreditRate(c,low) ,
CreditRate(c,low) ⇒ CreditAmount(c,x) ∧ x ≥ 0

red elements are still lacking in the
example dialogue: could bring it to
“form. Level 1” (initial formalization)

•  Rather incomplete and insufficient formalization so far

•  The main point is made first, the rest is added progressively and
insofar the participants are willing to/capable; otherwise, it is explicitly
delegated (relates to goals of this and further conversations)

•  The demands of the formalism and the domain are gradually
reconciled and stepped up if required

14

System Development as an Interconnected,
Goal-Driven Series of Conversations

•  Goals are set (Stakeholder, SD goals, Knowledge goals,
Communication Goals, Language Goals)

•  RE goals: typically look like SD goals and Knowledge goals
•  However, they have the other types as sub-goals
•  Minimally, it is good to have awareness of these
•  All sorts of development goals will develop/emerge/change

during the development process!!

15

Development System Development Goals?
•  RE of RE!
•  Project Modeling as a system
•  Communication/information modeling
•  …

•  (short discussion)

16

Knowledge Goals in System Development?
•  Share
•  Agree
•  Commit

•  Explicitness of knowledge (see article “Understanding the
Requirements on Modeling techniques”):
–  Formality
–  Quantifiability
–  Executability
–  Comprehensibility
–  Completeness

17

Communications goals and strategies in SD
•  Who needs to communicate what to who, and why, and

how?
•  Execution plan
•  Description languages
•  Media
•  Cognitive mode (analytic/experimental; knowledge

handling)
•  Social mode (expert-driven or participatory)
•  Communication mode

–  Protocols (turn taking)
–  Participants
–  Patterns

18

Rational Conversations
•  Cost / benefit balance
•  Be rational about “means and ends”
•  Optimally effective, efficient
•  Measurement, reasoning, guidance
•  Computational bookkeeping and AI required?
•  Less art, more science of system development

•  (Also see article “System Development as a Rational
Communicative Process”)

19

Active goal-driven guidance of
RE/SD conversations?

•  How clever are you in steering/structuring RE conversations
•  It’s about ALL conversations in a project, and how they

relate
•  LOTS of bookkeeping: not just contents, but also

“conversation management”
•  Strategies? Planning?
•  If goals change, strategies change! Evolutionary

Development System (complex, adaptive system)

20

A tool: conversation-based system
development environment

•  Part Computer Supported Cooperative Work System
•  Part Knowledge Management System
•  Part Decision Support System
•  Part CASE-tool
•  Part Dialogue system

Except:
•  Think big, act small
•  We’ve started at the (formal) basis: conceptual modeling (ORM)

but now start putting process modeling central
•  RE environment: not document-based, but conversation based;

not product-oriented, but process-oriented; goal driven

21

Recent developments
•  Method Engineering

–  Rule-based
–  Operational method = Information system

•  Human-Computer Interaction approach
–  Not just languages
–  ALL aspects needed to make 2nd order ISs operational
–  HCI through modelling

•  Method engineering as game design
–  Metaphor
–  But also link to concrete systems

22

Ddembe Williams: Applying System Dynamics
to RE Projects
•  Show paper

23

Approach to Method Modelling:
Interaction System for Modelling

Speech acts Deep interface

State(s) of model and context DBMS

Rules and rule checking Rule engine

Structured ToDo list Generator

Reference procedures Workflow

Templates and views View interface

functionality realization

24

Advantages of the approach
•  Clear, goal-oriented, rule-based framework for methods
•  Many possibilities for collaborative setup (multi-player)
•  Advanced data gathering possible (interactions explicit)
•  Usability / playability / HCI central (out-of-the-box approach)
•  Operational process view on methods (SD link)
•  Justifiably controlled working environment
•  Effective guiding: score linked to quality system
•  Emotive factor becomes concrete
•  Clear link with virtual worlds / games (CASE tools)
•  Possibilities for links to game theory (strategies)
•  Many possibilities in education

25

Game Design Theory
•  Järvinen 2006: “Games without Frontiers: Theories and

Methods for Game Studies and Design”

•  Games are systems (and may have sub-systems)
•  Games are dynamic systems (structure, function, history)
•  Games are/include information systems (which is why their

computerization is so successful!)

•  Rules, and Objects the rules Act on
•  Communicative aspects of rules: communicative acts,

“Game Rhetoric”

26

Game Design Theory: basic elements
•  Goals
What players strive for
•  Components
Concrete items that players care for (e.g. “pieces”)
•  End and Victory Conditions
When the game is lost or won, or ends; introduce competition

and control the game’s duration
•  Game mechanics
The sorts of actions players can perform

27

Game Design Theory (2)
•  Environments
Spatial constraints like a board or virtual space (not mandatory)
•  Themes
Metaphors that add meaning to a game (not mandatory)
•  Interfaces
Especially for video games, but picking up a piece on the board is also an

interface

•  And, of course, rules: gluing it all together
•  Also, as part of the rules and the victory conditions: a score system

(many alternatives)
•  Games may involve a jury or referee or game master, so rules need not

cover 100% of constraints, goals, and evaluation (scoring).

28

Method Engineering
•  See thesis Roelofs

•  Still lacking:
–  Score system
–  Limited games
–  Clearer goals
–  Implementation!

29

Latest developments and results
•  Publications exploring and clarifying the principles
•  Project at Everest B.V. to investigate “Gaming Aspects of

the AQUIMA Tool Suite” (Wilmont)
•  Development of actual Games:

–  Process Modeling Game: Schotten, Aarts
–  Supply Chain Construction Game (value modeling), with UvT
–  Game for testing Information Query Language & procedure

(Claessens)

