Quantitative logics

David N. Jansen

Objectives

overview over quantitative logics
and (probabilistic) model checking

Objectives

express requirements and create behaviour models
know possibilities and limitations of model checking

know a variety of quantitative logics
and their model checking algorithms

You could write (the mathematical logic part of)
a simple model checker.

hods{BDDssymbolic-rmoderchecking
ol .

Practical matters

* website:
https://lab.cs.ru.nl/algemeen/Quantitative_logics

* exercises: no obligations

e written exam

What do you know already?

model checking?
probability theory?
Markov chains?

temporal logic?

Today’s programme

General overview

Temporal logic
Model checking basics
Probability theory basics

Global overview

Bisimi-
larity

Models

* extensions of transition systems
— discrete state space

— transitions describe possible behaviours
e probabilistic choice between transitions

e CTMC: stochastic timing
(probability distribution over how long a state lasts)

Example model:
Craps game

* throw two dice and sum them
-7, 11: win immediately
—-2,3,12: lose immediately
— other result: this result is “point”

e throw the dice until the result is:
—7: lose
— point: win

e can be modelled as a DTMC

Temporal logic

Principles

* want to describe properties of behaviours
— behaviour := sequence of computation steps

e extend propositional logic

— use propositions to describe one state

* modality operators:
— at some time & F(uture)

— aIways L] G(enerally)

General modal logics

* modality operators
allow general interpretation:
— in some possible world: <
— in all possible worlds: O

e different varieties

— temporal possible worlds = future

— knowledge possible worlds = consistent
with knowledge

— deontic possible worlds = consistent
with moral obligations

CTL: additional modalities

* modality operators:
—atsometime < F(uture)

— always L] G(enerally)

—in some future E

— in all futures A

Examples: mutual exclusion

Propositions:
—crit; component i is in critical section
— try; component i wants to enter critical section

It will never happen that both components
are in their critical sections.

In every state, a component may eventually
enter its critical section.

Whenever a component tries to enter its
critical section, it will do so eventually.

Model checking basics

Why model checking?

Therac-25: a medical irradiation device
with deadly software

generates electron beam

can be converted to X-rays
— about 1% efficiency —

wrong position = overdose!

>5 patients deceased

System verification

* solves some problems
with software correctness

 verification:
check whether system meets specification

* silent assumption: specification is correct
+ model behaves as system

Formal system verification

* use mathematics
to model and analyse ICT systems

* two main methods:
— deductive proof

* system model is a mathematical theory
e often computer-assisted
— model checking

* system model is a finite automaton (or similar)
* in principle fully automatic

Model checking: idea

* create a model of the behaviour
* specify desired behaviours
* look for a formal proof (automatically)

— (proof rules should be simple enough
that provability is decidable)

Model checking: idea

Requirements

Specification

Model
checker

(+ witness) No (+ counterexample)

Property specification language:
temporal logic

* typical properties:
— Can the system reach a deadlock?
— Can two processes be in the critical section?
— Is the output correct upon termination?

e standard property:
— Can the system reach an undesired state?

— Will the system reach a desired state?

Mutual exclusion

e Requirements in CTL

Jf process 1 tries to execute its critical section
(T,), it will eventually enter it (C,)."

T1 — Ao C1

e Subformulas:
T, C, T, Ao C, ~T,VAoC,

Model checking

© 1986 ACM Trans. Programming Languages and Systems

Model checking

© 1986 ACM Trans. Programming Languages and Systems

Model checking

© 1986 ACM Trans. Programming Languages and Systems

Model checking

Model checking

Recapitulation

e System verification makes sure
the system satisfies its specification.

* Model checking is a method for system
verification, (in principle) fully automatic.
 Model checking reads
— a behavioural system model (transition system)
— a property (temporal logic)

Probability theory

What are probabilities?

* general: a measure how likely an outcome is

* frequentist interpretation:

the expected number an outcome appears
if an experiment is repeated often

* bets interpretation:
the proportion of money someone bets
on a single outcome

Where do probabilities
come from?

* mathematical concept
* to model random process

(relation between cause and result is not completely known)

— metaphysical randomness
(cause does not completely determine the result)

— | am not interested in/l do not know the cause

— No scientist (currently) knows the exact cause
(but given enough time & money, one could find out)

— The cause lies outside the realm of science

How to define a probability space

* Example: throw a die
* Possible outcomes: Q = {@,0,5,2,5,6}
* Probability weight: P(Q) =%

P(E) = %

etc.

P(A) = pro
P(A,B) = pro
P(A|B) = pro

und

0d
0d
0d

Notation

o]
o]

o]

ity t
ity t
ity t

nat A happens
nat both A and B happen

nat A happens

er the condition
that B has happened

P(A|B) = P(A,B) / P(B)

Throw more dice

* How probable is an even outcome?
— P(even) = P(A) + P(E1) + P(E) = ¥

* How probable is the outcome B,
given that we know the outcome is even?
— P(E|even) = P(E,even) / Pleven) =%/ Y% =V%
— P(even|®E) = P(even, &) / P(E) =1

Another example

Some process (e. g. solving a quiz)
takes between 2 and 5 minutes,
each duration D having equal probability.

What is the probability that it takes exactly
D = 3.1415 minutes?

1= 2 P(D=x)= 2 py=°°p,

XE[Z,S] XE[ZIS]

and therefore p,=1 /22 =0

P(D<3)=3 p,= % 0=0 ©

x€[2,3] x€[2,3]

A better definition

* assign probabilities to subsets of O
In a systematic way

* A o-algebra Ais a set of subsets:

—QeA
—-Ac A2>20\Ae A

—A.e Aforalli=1,2,... 2 'U1 A.e A

| =

* Generally: It is sensible to assign a probability
to each set in the o-algebra.

Example: Borel-c-algebra

Q=R

‘B = the smallest o-algebra
that contains all intervals [r,s), forr,s e R

standard o-algebra for the real numbers

Emile Borel, French mathematician, Mg
1871-1956, wrote Le Hasard

