Quantitative logics

David N. Jansen

Objectives

overview over quantitative logics and (probabilistic) model checking

Objectives

- express requirements and create behaviour models
- know possibilities and limitations of model checking
- know a variety of quantitative logics and their model checking algorithms
- You could write (the mathematical logic part of) a simple model checker.
- optimisation methods (BDDs, symbolic model checking)
- solve linear equation systems

Practical matters

- website: https://lab.cs.ru.nl/algemeen/Quantitative_logics
- exercises: no obligations
- written exam

What do you know already?

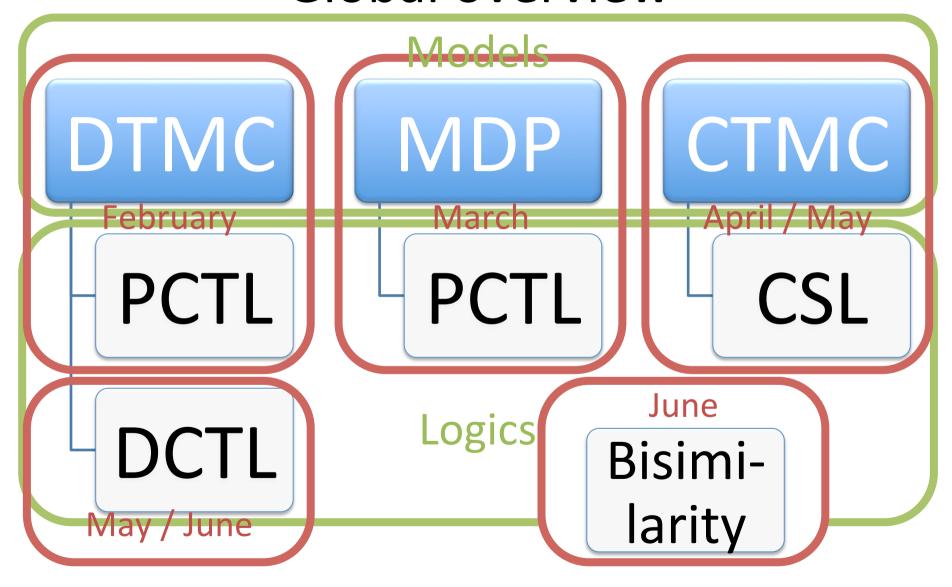
- model checking?
- probability theory?
- Markov chains?
- temporal logic?

Today's programme

General overview

- Temporal logic
- Model checking basics
- Probability theory basics

Global overview



Models

- extensions of transition systems
 - discrete state space
 - transitions describe possible behaviours
- probabilistic choice between transitions
- CTMC: stochastic timing (probability distribution over how long a state lasts)

Example model: Craps game

throw two dice and sum them

- 7, 11: win immediately

-2, 3, 12: lose immediately

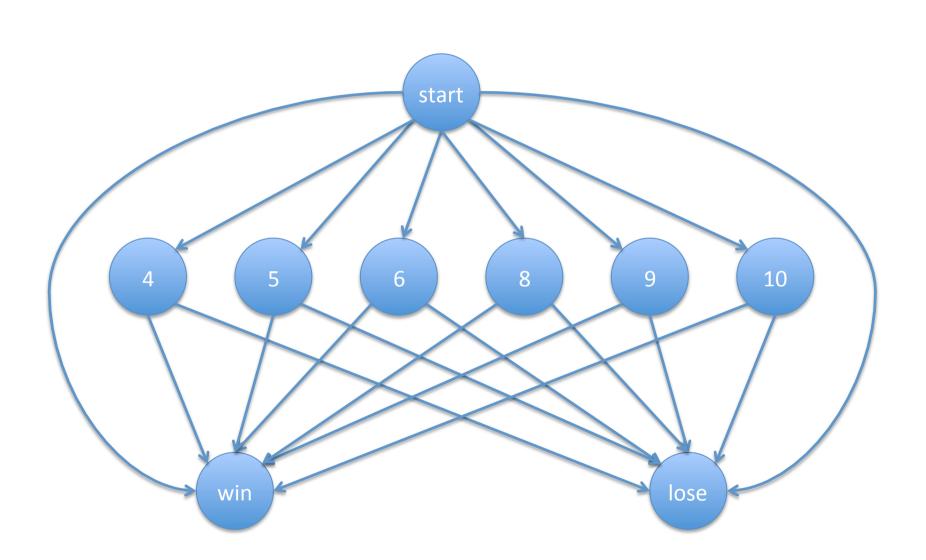
– other result: this result is "point"

throw the dice until the result is:

- 7: lose

– point: win

can be modelled as a DTMC



Temporal logic

Principles

- want to describe properties of behaviours
 - behaviour := sequence of computation steps
- extend propositional logic
 - use propositions to describe one state
- modality operators:

 - always \Box \Box \Box \Box (enerally)

General modal logics

- modality operators allow general interpretation:
 - in some possible world: ◊
 - in all possible worlds:
- different varieties
 - temporal possible worlds = future
 - knowledge possible worlds = consistent

with knowledge

– deontic possible worlds = consistent

with moral obligations

CTL: additional modalities

- modality operators:

 - always \Box \Box \Box \Box (enerally)
 - in some future
 - in all futures

Examples: mutual exclusion

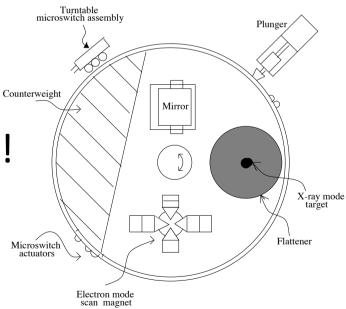
- Propositions:
 - $-crit_i$ component *i* is in critical section
 - $-try_i$ component i wants to enter critical section
- It will never happen that both components are in their critical sections.
- In every state, a component may eventually enter its critical section.
- Whenever a component tries to enter its critical section, it will do so eventually.

Model checking basics

Why model checking?

- Therac-25: a medical irradiation device with deadly software
- generates electron beam
- can be converted to X-rays
 - about 1% efficiency
- wrong position → overdose!

• ≥5 patients deceased



System verification

solves some problems
 with software correctness

verification:
 check whether system meets specification

- silent assumption: specification is correct
 - + model behaves as system

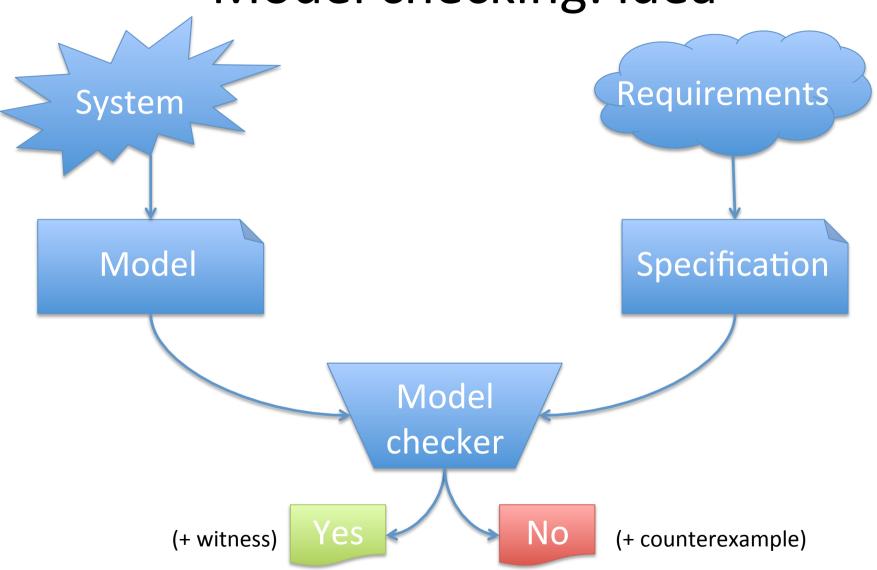
Formal system verification

- use mathematics to model and analyse ICT systems
- two main methods:
 - deductive proof
 - system model is a mathematical theory
 - often computer-assisted
 - model checking
 - system model is a finite automaton (or similar)
 - in principle fully automatic

Model checking: idea

- create a model of the behaviour
- specify desired behaviours
- look for a formal proof (automatically)
 - (proof rules should be simple enough that provability is decidable)

Model checking: idea



Property specification language: temporal logic

- typical properties:
 - Can the system reach a deadlock?
 - Can two processes be in the critical section?
 - Is the output correct upon termination?
- standard property:
 - Can the system reach an undesired state?
 - Will the system reach a desired state?

Mutual exclusion

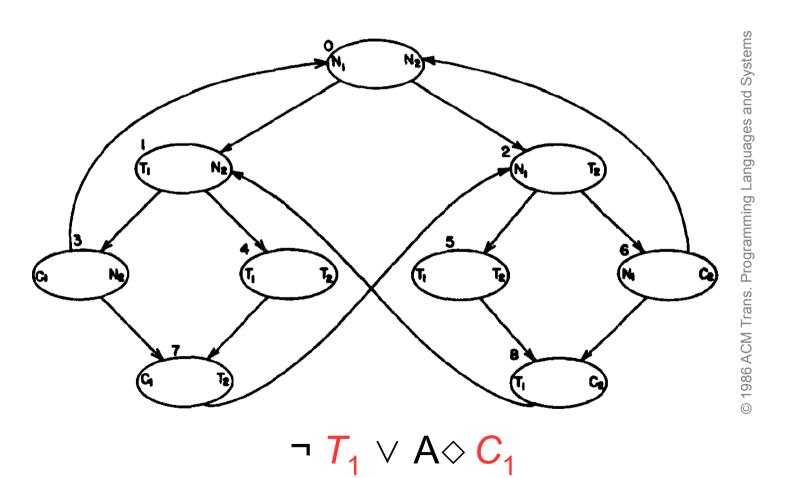
Requirements in CTL

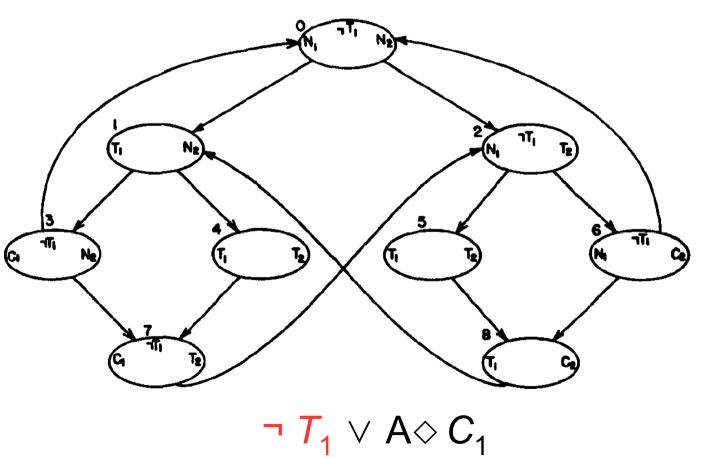
"If process 1 tries to execute its critical section (T_1) , it will eventually enter it (C_1) ."

$$T_1 \rightarrow A \diamondsuit C_1$$

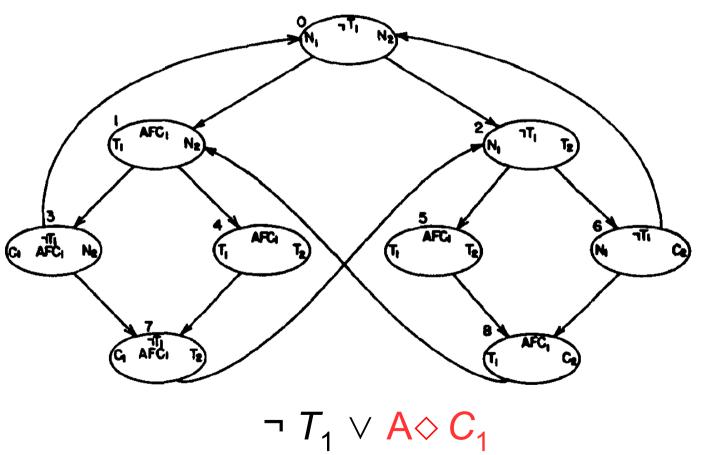
Subformulas:

$$T_1$$
 C_1 $\neg T_1$ $A \diamondsuit C_1$ $\neg T_1 \lor A \diamondsuit C_1$

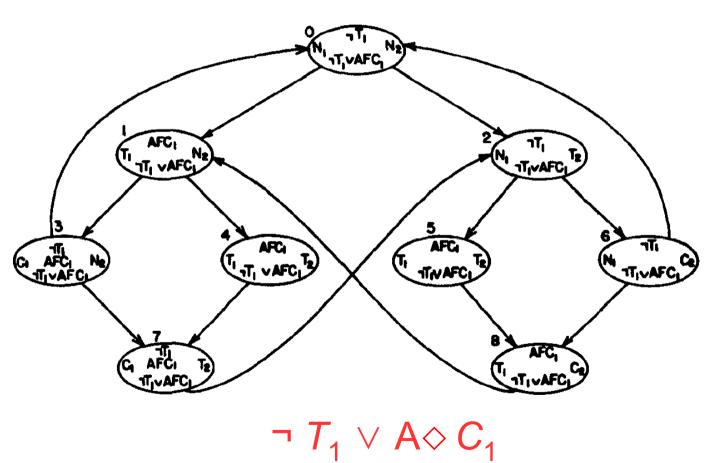




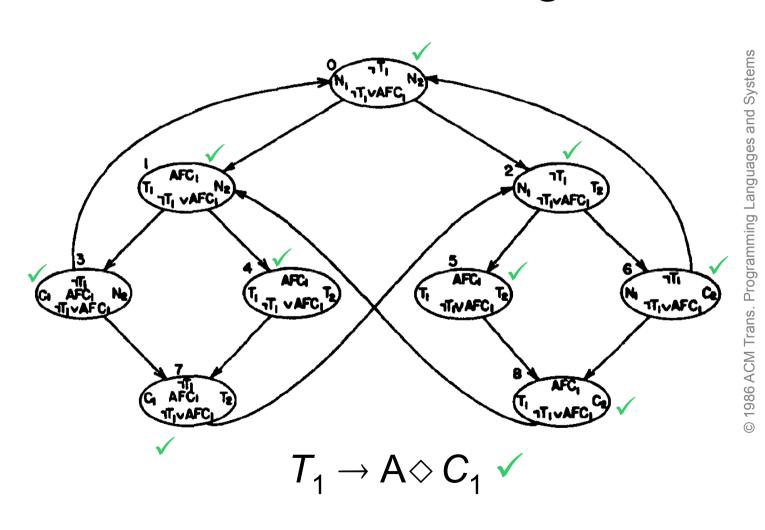
© 1986 ACM Trans. Programming Languages and Systems



© 1986 ACM Trans. Programming Languages and Systems



© 1986 ACM Trans. Programming Languages and Systems



Recapitulation

- System verification makes sure the system satisfies its specification.
- Model checking is a method for system verification, (in principle) fully automatic.
- Model checking reads
 - a behavioural system model (transition system)
 - a property (temporal logic)

Probability theory

What are probabilities?

general: a measure how likely an outcome is

- frequentist interpretation:
 the expected number an outcome appears
 if an experiment is repeated often
- bets interpretation: the proportion of money someone bets on a single outcome

Where do probabilities come from?

- mathematical concept
- to model random process
 (relation between cause and result is not completely known)
 - metaphysical randomness
 (cause does not completely determine the result)
 - I am not interested in/I do not know the cause
 - No scientist (currently) knows the exact cause (but given enough time & money, one could find out)
 - The cause lies outside the realm of science

How to define a probability space

- Example: throw a die
- Possible outcomes: $\Omega = \{ \Box, \Box, \Box, \Box, \Box, \Box \}$
- Probability weight: $P(\Box) = \frac{1}{6}$ $P(\Box) = \frac{1}{6}$ etc.

Notation

- P(A) = probability that A happens
- P(A,B) = probability that both A and B happen
- P(A|B) = probability that A happens under the condition that B has happened

• P(A | B) = P(A,B) / P(B)

conditional probability

Throw more dice

- How probable is an even outcome?
 - $-P(\text{even}) = P(\square) + P(\square) + P(\square) = \frac{1}{2}$
- How probable is the outcome □, given that we know the outcome is even?
 - $-P(\square | \text{even}) = P(\square, \text{even}) / P(\text{even}) = \frac{1}{6} / \frac{1}{2} = \frac{1}{3}$
 - $-P(\text{even} \mid \blacksquare) = \underline{P}(\text{even}, \blacksquare) / P(\blacksquare) = 1$

Another example

- Some process (e. g. solving a quiz)
 takes between 2 and 5 minutes,
 each duration D having equal probability.
- What is the probability that it takes exactly D = 3.1415 minutes?

•
$$1 = \sum_{x \in [2,5]} P(D = x) = \sum_{x \in [2,5]} p_0 = \infty \cdot p_0$$

- and therefore $p_0 = 1 / \infty = 0$
- $P(D \le 3) = \sum_{x \in [2,3]} p_0 = \sum_{x \in [2,3]} 0 = 0$

A better definition

- assign probabilities to subsets of Ω in a systematic way
- A σ -algebra \mathcal{A} is a set of subsets:
 - $-\Omega \in \mathcal{A}$
 - $-A \in \mathcal{A} \rightarrow \Omega \backslash A \in \mathcal{A}$
 - $-A_i \in \mathcal{A}$ for all $i = 1, 2, ... \rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$
- Generally: It is sensible to assign a probability to each set in the σ -algebra.

Example: Borel-σ-algebra

- $\Omega = \mathbb{R}$
- \mathcal{B} = the smallest σ -algebra that contains all intervals [r,s), for $r,s \in \mathbb{R}$

- standard σ -algebra for the real numbers
- Émile Borel, French mathematician, 1871–1956, wrote Le Hasard

