## Markov decision processes

Quantitative Logics
David N. Jansen

### Repetition...

- Kripke structure / transition system: choice between transitions is nondeterministic
- Markov chain: choice between transitions is (fully) probabilistic

Can I have both?



# Let's play a better game



### What do we need?

- simple game:
   move = probabilistic choice
- interesting game:
   move = tactical choice + probabilistic choice
  - tactical choice done by external entity
  - based on current situation
  - we cannot or want not assign probabilities to tactical choices
  - assumptions: tactical choice first. one player only

### Markov decision process

• In a MDP, transitions combine nondetermistic and probabilistic choices!

- Examples:
  - one-player strategy games (Patience)
  - algorithms where some parts are random

### Formal definition

A Markov decision process consists of:

```
- S finite set of states
```

(often 
$$S = \{1, 2, ... n\}$$
)

$$-\mathbf{P}: S \times Act \times S \rightarrow [0,1]$$

transition probability matrix

for every action

$$-\pi_0$$
: S  $\rightarrow$  [0,1] initial state distribution (sometimes)

# Semantics of a Markov Decision Process

- similar to Kripke structure:
  - system starts in one of the initial states, chosen according to  $\pi_0$
  - system is always in a state
  - from time to time, a transition is taken:
    - ullet some external entity chooses an action  $\alpha$
    - when the system leaves state i, the next state is j with probability  $P(i,\alpha,j)$

### Example: Yahtzee

- first roll: player rolls all five dice
- later: player chooses 0–5 dice to roll again
- some combinations of dice give points
  - Pair, Triple, Carré, Yahtzee: 2–5 equal faces
  - Full House: Triple + Pair
  - 1, 2, ..., 6: any die with that face counts
  - etc.

# Recall: Cylinder Set of a Markov Chain



# Probability Space of a Markov Chain

- $\Omega$  all paths
- $\mathcal{F}$   $\sigma$ -algebra generated by cylinder sets
  - Cyl( $s_0, s_1, ..., s_n$ ) := paths starting with  $s_0, s_1, ..., s_n$
  - complements and unions of cylinder sets
- $\mu$  unique extension of

$$\mu(\text{Cyl}(s_0, s_1, ..., s_n)) = \pi_0(s_0) \cdot \mathbf{P}(s_0, s_1) \cdot \mathbf{P}(s_1, s_2) \cdots \mathbf{P}(s_{n-1}, s_n)$$

### No unique probability space!

 Probability to take a transition depends on external choices

 To resolve nondeterminism, introduce a scheduler/policy/strategy/adversary.

### Strategy

 A strategy is a mapping from paths in the MDP to actions.

- may depend on full history!
- in practice, often only depends on
  - last state
  - last state + length of history
  - last state + finite "memory"

had a full house, so I should try something else.

#### Induced Markov chain

- A MDP + a strategy together induce a Markov chain.
- MC may be infinite.

 There is a one—one correspondence between finite paths of the MDP + strategy and paths of the induced MC.

# Probability space of a MDP + a strategy

- The probability space of the induced MC is a probability space of the MDP.
- Notation:  $Prob^{\sigma}(Cyl(s_0,s_1,...))$  for strategy  $\sigma$

## interesting measures

 Find the least/highest probability to reach a state

Find the best/worst strategy

PCTL (interpreted on MDPs)

### What to do with unused actions?

possible ways of handling:

- self loop
- error state
- join with a real choice

(allow that not every action can be chosen,
 e.g. by a function that tells which actions are
 allowed in a state)

#### Randomised mutual exclusion

- Two processes compete for a resource.
- If both want access at the same time, an arbiter picks one process at random.
- Otherwise, every process gets access whenever it tries.

Draw a MDP for this situation!

### Recapitulation

- Markov decision processes combine nondeterministic and probabilistic choices.
- Strategies select how to resolve nondeterministic choices.
- MDP + strategy induce a Markov chain.
- Probabilities on a MDP are defined via the induced Markov chain.