
Requirements Engineering, Lecture 4:

Managing Requirements and People

&

Traceability

Stijn Hoppenbrouwers

2

We’ll talk about some highlights only now
•  READ THE BOOK YOURSELF!
•  Particularly good passage Nell and the Coffee Shop:
•  Feel the advantages of short-cyclic, iterative development

•  But if you have time, have a look at: http://
noorderlicht.vpro.nl/afleveringen/3502225/ for a contrasting
way of thinking. Who’s “right”? Different underlying
assumptions?

3

HI/I: Holistic Iterative/Incremental
• Methodologists in late 1990's combined available

lifecycles.
• Pronounced “hi-eye” (HI/I).
• All use tools / techniques to keep up with massive

changes in business today:
•  Unified Process (UP) (Rational Univied Process: RUP)
•  eXtreme Programming (XP)
•  Adaptive SW Development (ASD)
•  Agile SW Development (AgileSD)
•  SCRUM

4

Feedback Central

➢ All have rigorous focus on continuous
feedback loops between development and its
stakeholders (business).
➢ Different from previous lifecycles in that they

have built-in “holistic perspectives”.
➢ The view of the whole is never lost.
➢ Accomplished with strong architectural vision,

including business strategy.

5

Iterative (the “Totem Pole” metaphor)

➢ Iterative - redoing something several times,
increasing richness, comprehensiveness and
consistency each time.
➢ Not random hacking
➢ Not playpen for developers
➢ Not something that affects only developers
➢ Not redesigning over and over until chance fix

found
➢ Not unpredictable
➢ Not excuse for failing to plan and manage

6

Incremental (the “House Construction” metaphor)

➢ Incremental – creating something piece by
piece, integrating pieces into whole a little at a
time.
➢ YET: following a (rough) design
➢ Also referred to as build-deliver-learn.
➢ In context for RE course: completing batches of

use cases and business rules etc. together.
➢ Not all artefacts need to be completed together.

7

Holistic

➢ Holistic – keeping an eye on the big picture.
➢ Architect must keep the end goal view in each

iteration.
➢ Business strategy alignment must also be kept

in view, staying true to the business vision of
the application.
➢ This is found in your MVV.

8

Adaptivity

➢ Adaptability – capability of being made suitable or fitted
to a specific situation (be adapted by someone else)

➢ Adaptivity – capability of making suitable or fitting a
specific situation. (adapt yourself/itself)

➢ Is any software development team completely adaptive?

➢ Very interesting research direction “Complex Adaptive
Systems” http://www.caseresearch.com/

9

Development (of) systems
•  What do “information systems” look like?

–  Computational?
–  Socio-technical?

•  Can fully automated information systems exist?

•  What is it that “creates” computational systems?
•  What do “development systems” look like?
•  Can fully automated development systems exist?

•  What could I possibly mean by “2nd order information
system”?

10

Wicked Problems (zie Proper’s oratie)
•  Je begrijpt een gemeen probleem pas goed als je er een

oplossing voor hebt bedacht. Elke mogelijke oplossing brengt
nieuwe aspecten van het probleem aan het licht, aspecten die
verdere aanpassing van de oplossing vereisen.

•  Gemene problemen hebben geen stopcriterium. Er is geen
eenduidige en stabiele probleemdefinitie te geven. Als gevolg
hiervan is het is niet duidelijk wanneer het probleem echt is
opgelost.

•  Oplossingen voor gemene problemen zijn niet simpelweg goed of
fout. In plaats daarvan zijn ze “beter”, “slechter” of “goed genoeg”.
Voor gemene problemen is het moeilijk om op een objectieve
wijze de kwaliteit van een oplossing te beoordelen.

•  Elke oplossing van een gemeen probleem krijgt slechts één kans.
Elke realistische poging heeft direct consequenties. Je kunt niet
eerst een Betuwelijn bouwen om te zien of het wel of niet zal
werken in de praktijk.

Traceability

12

Definition

• Traceability – “clarity of linkage between
artifacts”.

•  Use cases can be tremendous tool.
• We will take a look at what is good about traceability.
• We will also look at trouble traceability can cause.

13

Important

• Provides assurance that software matches
stakeholders wishes at end of lifecycle

• Why is traceability important?
• If you were sponsoring a project, would you want to

know at a given moment what the project team is
working on

• And: why they are working on it?

14

Important

•  Traceability is important because:
• Everyone needs to feel like building what is

supposed to be built.
• Business often demands provability (that right

thing is being built)
• Large $$$ investments: one should be able to

prove that work takes place on what is promised
(in all phases).

• IT’S ALL ABOUT CONTROL

15

What and Why?

• Looking at the waterfall lifecycle.
• Imagine we are 60% through development...
• ...we show that we are working on something...
• ...but not that we are working on the RIGHT thing ...
• ...damn!

16

Changes

• When changes occur in project, we see impact
rippling through lifecycle artefacts.

• This helps business understand costs of change.
• Helps team identify and change all related

artefacts for a change.

17

Functionality

• Stakeholders viewing system functions later in
lifecycle see unexpected features.

• Traceability helps the decision making
process that brought features into scope by
making dependencies and consequences
visible.

• Reduces “finger-pointing” (dealing of blame)

18

Traceability is Hard

• Stakeholders needs chang during lifecycle.
• Team members change
• A delivery cycle may get off track (especially if

it is too long)
• Things are passed between team members as

documents, not as hands-on knowledge
• Linkage is not easy between artefact types (for

example, between contract-style req.'s and
analysis/design artifacts).

19

Traceability problems

Traceability supporting measures an create these problems
if we are not careful:

•  Too many artefacts.
•  Too many tools with too many integrations.
•  Too many special 'gatekeeper' roles (bureaucrats)

20

Traceability cures
•  Traceability can be helped by:

•  Use cases
•  Non-functionals
•  Short feedback loops between team and business

stakeholders
•  Demonstrable “inch pebbles” (milestones, but for

short cycles)
•  Integration between tools
•  Configuration managements
•  Egalitarianism (equality in the team)
•  See book, page 149-157 for more...

21

Automated lifecycle Tools

• Rational Suite (see book for details).
• eXpressroom
• Borland CodeWrite
• CompuWare
• Some freeware
• … !

22

Tracing back to use cases

• Use cases are the central traceability artefact.
•  Readable by business people, credible starting point.
•  Coarse grained, allowing large system to be divided

into manageable parts.
• Use cases can have traceability links to:

•  Analysis/Design/Test models, sequence/class/state
diagrams, planning documents, training
documentation, etc...

•  See book for details.

23

Analysis Model Traceability

•  Use cases provide easy traceability if OO analysis is
used.

• Sequence diagram - use case steps translate to set of
messages between objects.

• Class diagram – names are nouns in use case.
• State diagram – states are pre- post-conditions of use

cases and transitions are messages from initiating
actors or sequence diagrams.

• Analysis models contain entity classes. “Taking care
of business rules and business processes”

24

Test Model Traceability

•  Clearest traceability link is between use cases and test
models:

•  Use cases ARE test cases!
•  Just moved to the front of lifecycle and called

requirements
•  Test plan organized by use cases.
•  Add test data to use cases to become testable.
•  Test cases focus on each use case path.

25

UI Design Traceability

•  UI design comes from requirements:

•  Use cases PLUS usability requirements (often non-
functional).

•  UI storyboards use use cases as 'stories', screen
mock-ups are user walk through of use case.

26

Application Architecture

•  Provides the foundation for how components and objects
are organized in target technical environment.

•  Use cases help identify control objects or components.

• Control objects manage other objects into
transactions that are useful to users.

• These transactions are patterned after use
cases.

27

Documentation / Training

• Often overlooked traceability opportunity.
• Users learn application by use case, one story at a

time.
• Organize end user training and user

documentation by use case.
• Allows documentation and training professionals

to fit into iterative/incremental lifecycle.

28

Product Marketing

• Use cases are an effective marketing tool.
• As new product is released, marketing has useful

list of “stories to tell”.
• This subsequently provides new sections for

product demonstration scripts.

